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1 For each item below, give an example of a knot with the stated properties. Justify
your answers. You may use theorems proved in lecture, as long as you state them clearly.

(i) A knot K1 with g(K1) = 2022.

(ii) A knot K2 with g(K2) = 1 and c(K2) = 2022.

(iii) A knot K3 for which ∆K3(t) 6∼ 1, but detK3 = |∆K3(−1)| = 1.

(iv) A knot K4 which is not isotopic to the unknot, but which has ∆K4(t) ∼ 1. [You
should explain why ∆K4(t) ∼ 1, but do not need to justify that your example is not
the unknot.]
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2 Consider two links L and L′ represented by diagrams D and D′ of the form shown
in the figures below. Here D1 and r(D1), the parts of D and D′ contained in the left-hand
disks, are related by a 180◦ rotation around a vertical line as shown.

(a) Prove that L and L′ can be oriented so that V (L) = V (L′). [Hint: Use the
Kauffman bracket skein relation to resolve all crossings in D1.]

(b) Show that the links L and L′ need not be isotopic to each other. [Hint: Look
for an example where the individual components of L and L′ are different knots.]

D2D2D1 r(D1)

L L'

r(D1)

Figure 1: The diagrams D and D′.

D1 r(D1)
Figure 2: An example of 180◦ rotation.

Figure 3: An example of D and D′.
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3 Let K be a knot represented by a diagram D, with complementary regions R0

(the infinite region), R1, . . . , Rn. Assume that D is reduced, so that no two corners of a
crossing of D belong to the same region Ri. Let R0 be the infinite region, and let R1 be
a region of D which is adjacent to R0, as shown in the figures below. Let

PDehn = 〈a1, . . . , an |w1, . . . , wn−1〉

be the Dehn presentation of π1(EK) associated to D.

(a) Explain how to find the relations wj from D. [No justification is required.]

(b) Let a1 be the generator associated to the region R1. Explain how to compute
the Alexander polynomial ∆K(t) from the Fox derivatives daiwj for i > 1. Justify your
answer.

(c) A Kauffman state for D is a decoration of D in which we draw a black dot in
one of the four corners adjacent to each crossing of D, subject to the constraint that R0

and R1 contain no dots, and that for i > 1, Ri should contain exactly one dot. See the
figure for two examples of Kauffman states associated to a diagram of the figure 8 knot.

Let S(D) be the set of all Kauffman states of D. Show that

∆K(t) ∼
∑

s∈S(D)

(−1)ε(s)tδ(s)

where ε(s) and δ(s) are integers associated to s. [You do not need to describe how to find
ε(s) and δ(s).]

0R0RR1 R10R0R

Figure 1: Two Kauffman states for a diagram of the figure-eight knot.
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4 Let K ⊂ S3 be a knot. Briefly explain why its exterior EK is homotopy equivalent
to a cell complex X with 1 0-cell, n 1-cells, and n− 1 2-cells for some number n > 0. [A
detailed proof is not required.]

Show that there is a unique surjective homomorphism α : π1(X) → Z/2. Let
p : X̂ → X be the covering map corresponding to kerα. Show that H∗(X̂) has the
structure of a module over R̂ = Z[Z/2] ∼= Z[t]/(t2 − 1). Briefly explain how to give X̂ a
cell structure so that Ccell

∗ (X̂) is a free module over R̂. How is Ccell
∗ (X̂) related to Ccell

∗ (X̃),
where X̃ is the infinite cyclic cover of X?

Suppose that p is an odd prime, and that Fp is the field of order p. Show that

H∗(X̂;Fp) ∼= H∗(EK ;Fp) ⊕ H∗(C−), where C− = Ccell
∗ (X̃) ⊗R R−, R = Z[t±1], and

R− = Fp[t
±1]/(t+ 1). By considering the Alexander polynomial or otherwise, prove that

H∗(C−) is nonzero if and only if p divides detK. What is H∗(X̂;Q)?

5 (a) Suppose C : Sk−1 ↪→ Nn−1 is a smoothly embedded sphere in a manifold N of
dimension n− 1. What is meant by a framing of C? Give an example of such a C which
has no framings. If a framing exists, describe the set of homotopy classes of framings of
C. [No justification is needed.] What is this set when k = 2 and n = 4?

(b) Let L̂1 be the (n, n) torus link with framing 1 (relative to the Seifert framing) on

each component. What is the intersection form on W (L̂1)? Compute H∗(S3
L̂1

). Identify

the manifold W (L̂1) and its boundary S3
L̂1

.

(c) Now let L̂2 be the (n, n) torus link with framing 0 (relative to the Seifert framing)

on each component. What is the intersection form on W (L̂2)? Compute H∗(S3
L̂2

) and

identify the manifold S3
L̂2

.
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