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(a) Define properness for a morphism of schemes and state the valuative criterion for
properness. Explicitly verify the valuative criterion for the structure morphism
P2
k → Spec k for maps from discrete valuation rings.

(b) Give an example of a scheme X over Spec C that is universally closed but fails to
be proper.

(c) Let X be a Noetherian scheme that is proper over a field k. Let A• be a coherent
sheaf of graded OX -algebras that is locally generated in degree 1. Define Y to be
the global Proj construction:

Y := Proj
X
A•.

Prove that Y is proper over k.

(d) Let X and Y be schemes over Spec k. Let f, g : X → Y be morphisms. Prove that
there exists a largest locally closed subscheme of X such that f and g coincide on
this subscheme. If Y is separated, prove that this locus is a closed subscheme of X.

2

A scheme over a field k will be said to satisfy condition (?) if it is noetherian,
integral, separated, and regular in codimension 1.

(a) Let X be a scheme over a field k satisfying (?). Define a Weil divisor on X. Define
the class group of X.

(b) Let X be P3
k and let C be a closed subscheme of dimension 1. Show that U = X \C

satisfies (?). Calculate the class group of the scheme U .

(c) Prove or give a counterexample: every closed subscheme of affine space satisfying
(?) has torsion free class group.

(d) Let ι : P1 × P1 ↪→ P3 be the Segre embedding, with image given by the scheme
theoretic vanishing of XZ−YW in the homogeneous coordinates on P3. Prove that
both P1 × P1 and P3 are regular, i.e. the local rings at all points are regular. Prove
that pulling back line bundles gives rise to a well-defined map of divisor class groups

ι? : Cl(P3)→ Cl(P1 × P1).

Calculate the domain, target, and image of this map. [You may use the fact that
local rings of An are regular.]
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Let k be a field.

(a) Let Z be an integral closed subscheme of A2
k. Let U be the open subscheme A2

k \Z.
Calculate the sheaf cohomology group H0(U,OU ) and comment on how the answer
depends on the dimension of Z.

(b) Let X be a topological space and F a sheaf of abelian groups. Fix an open cover
of X and define the Čech cohomology groups with respect to this open cover.
By choosing an appropriate cover, explicitly calculate the sheaf cohomology group
H1(P1

k,O(−1)).

(c) Let X be the scheme

Spec k[X1, X2, X3] \ {〈X1, X2, X3〉} = A3
k \ {0}.

By using Čech cohomology for an appropriate open cover, calculate all sheaf
cohomology groups for the sheaf OX .

(d) Let fd be a homogeneous polynomial in 4 variables of degree d. Let X be the scheme
theoretic vanishing locus of fd and consider

i : X ↪→ P3
k.

Describe an exact sequence

0→ OP3(−d)→ OP3 → i?OX → 0.

Deduce that H1(X,OX) vanishes. [You may use any result about the cohomology
of sheaves on projective space provided it is clearly stated].
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