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1 (a) Let k ∈ Z and let Γ 6 SL2(Z) be a congruence subgroup. Define the space
Mk(Γ) of modular forms of weight k and level Γ.

(b) Now let N ∈ N and assume that k > 2. For each (x, y) ∈ (Z/NZ)2 and τ ∈ h,
define

G
(x,y)
k (τ) =

∑

(c,d)∈Z2−{(0,0)}
(c,d)≡(x,y) mod N

(cτ + d)−k.

Prove that G
(x,y)
k (τ) converges absolutely to a holomorphic function in h.

(c) Show that if γ ∈ SL2(Z), then G
(x,y)
k |k[γ] = G

(x,y)γ
k .

(d) Prove that G
(x,y)
k ∈Mk(Γ(N)).

2 Let k > 12 be an even integer.

(a) Let
F = {τ ∈ h | |τ | > 1,Re(τ) ∈ [−1/2, 1/2]}.

Show that every element of h is SL2(Z)-conjugate to an element of F .
(b) Show that if f ∈ Sk(SL2(Z)) has q-expansion f(τ) =

∑∞
n=1 an(f)q

n, then there
is a constant C > 0 such that |an(f)| 6 Cnk/2 for each n ∈ N.

(c) Let Gk(τ) =
∑

(c,d)∈Z2−{(0,0)}(cτ + d)−k ∈ Mk(SL2(Z)). Show that if f ∈
Sk(SL2(Z)), then the integral

∫

τ∈SL2(Z)\h
f(τ)Gk(τ)y

k dxdy

y2

(where τ = x+ iy) is absolutely convergent, and compute its value.

3 Let N be a positive integer, and let p be a prime number.

(a) Define the congruence subgroup Γ1(N).

(b) Let L(N) denote the set of pairs (Λ, v + Λ), where Λ 6 C is a lattice and
v+Λ ∈ C/Λ is a point of exact order N , in the sense that Nv+Λ = 0+Λ but dv+Λ 6= 0+Λ
for any d ∈ N, 1 6 d < N . Let C× act on L(N) by λ(Λ, v + Λ) = (λΛ, λv + λΛ).

Show that the map τ 7→ (Λτ , 1/N + Λτ ), where Λτ = Zτ ⊕Z, determines a bijection

Γ1(N)\h ∼→ C×\L(N).

(c) Let (Λ, v + Λ) ∈ L(N). Let ap(Λ, v + Λ) denote the number of lattices Λ′ 6 C
such that Λ 6 Λ′, [Λ′ : Λ] = p, and the image v + Λ′ of v + Λ in C/Λ′ has exact order N .

Compute ap(Λ, v + Λ) when (i) p does not divide N and (ii) when p divides N .
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4 Let k > 2 be an even integer.

(a) Let Λ 6 Rn be a lattice. Define the dual lattice Λ∨ 6 Rn. State and prove
a version of the Poisson summation formula for a continuous function f : Rn → C and
lattice Λ.

(b) Let us identify C = R2 using the basis 1, i. Given a lattice Λ 6 C, define

θk(Λ) =
∑

λ∈Λ

λke−π|λ|
2
.

Prove the identity
θk(Λ) = (−i)km(Λ)−1θk(Λ

∨).

[You may use the identity f̂k(x, y) = (−i)kfk(x, y), where f̂k(x, y) is the Fourier transform
of the function fk : R2 → C given by the formula fk(x, y) = (x+ iy)ke−π(x2+y2).]

(c) For τ ∈ h and s ∈ C with Re(k + 2s) > 2, let

Gk(τ, s) =
∑

(c,d)∈Z2−{(0,0)}

Im(τ)s

(cτ + d)k|cτ + d|2s

(you may assume that the sum converges absolutely for such values of s).

Prove that for each fixed τ ∈ h, the function Gk(τ, s) admits an analytic continuation
to all s ∈ C. [You may assume any relevant properties of the function Γ(s).]
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