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1 Let X1, . . . , Xn be independent random variables taking values in [0, 1], with
E(Xi) = µi ∈ (0, 1) for i = 1, . . . , n. Writing X̄ := n−1

∑n
i=1Xi and µ̄ := n−1

∑n
i=1 µi,

prove that
P(X̄ − µ̄ > x) 6 e−nkl(x+µ̄,µ̄)

for every x ∈ [0, 1 − µ̄], where kl(a, b) := a log
(
a
b

)
+ (1 − a) log

(
1−a
1−b
)

for a ∈ [0, 1] and
b ∈ (0, 1), and where 0 log 0 := 0.

Hence or otherwise, show that for every δ > 0,

P
(
X̄ > (1 + δ)µ̄

)
6
(

eδ

(1 + δ)1+δ

)nµ̄
6 e−nδ

2µ̄/(2+δ).

Prove further that for every δ ∈ [0, 1],

P
(
X̄ 6 (1− δ)µ̄

)
6
(

e−δ

(1− δ)1−δ

)nµ̄
6 e−nδ

2µ̄/2.

[You may use the inequalities log(1 + z) 6 z for all z > −1, 2z/(2 + z) 6 log(1 + z) for all
z > 0 and z + (1− z) log(1− z) > z2/2 for all z ∈ [0, 1) without proof.]
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2 In the context of kernel density estimation, define what is meant by a kernel.
If X1, . . . , Xn are independent with density f on the real line, define a kernel density
estimator f̂n ≡ f̂n,h,K(·) of f with bandwidth h > 0 and kernel K.

What does it mean to say that a kernel is of order ` ∈ N?

Given δ ∈ (0, 1] and x ∈ R, describe Lepski’s method for choosing a bandwidth ĥδ
designed to ensure that f̂n,ĥδ,K(x) is close to f(x) with probability at least 1− δ.

[You may assume the existence of a bounded kernel of order ` that vanishes outside

[−1, 1], and may find the following definitions helpful: Γ := ‖K‖2∞
9R(K) , where R(K) :=∫∞

−∞K
2(u) du,

Hn,δ :=

{
2jΓ

n
log

(
2
⌊

2`
2`+1 log2(4n)

⌋

δ

)
: j = 1, . . . ,

⌊
2`

2`+ 1
log2(4n)

⌋}
,

and

σ̂n,h,δ :=

(
32f̂∞R(K) log(2|Hn,δ|/δ)

nh

)1/2

,

for a suitable f̂∞ that you should define.]

With β ∈ (0, `] and L > 0, assume that the density f belongs to the Hölder class
F(β, L) and let

hopt :=

(
D2
β,L,K

log(2|Hn,δ|/δ)
n

)1/(2β+1)

,

where Dβ,L,K := (dβe−1)!
√

8R(K)/{Lµβ(K)} and µβ(K) :=
∫∞
−∞ |u|β|K(u)| du. Explain

why there exists n1 ≡ n1(β, L,K, δ) ∈ N such that for n > n1, we have h̃opt :=
max

(
Hn,δ ∩ [0, hopt]

)
> hopt/2.

Now assume further that there exist an event Ω0 ≡ Ω0(n, δ) with P(Ωc
0) 6 δ, as well

as A ≡ A(β, L) > 0 and a positive integer N ≡ N(β, L,K, δ) > n1 such that for n > N ,
we have on Ω0 that f̂∞ 6 A and

∣∣f̂n,h,K(x)− f(x)
∣∣ 6 σ̂n,h,δ for all h ∈ Hn,δ ∩ [0, h̃opt].

Prove that for n > N , we have on Ω0 that

∣∣f̂n,ĥδ,K(x)− f(x)
∣∣ 6 C(β, L,K)

(
log
(
log(4n)/δ

)

n

)β/(2β+1)

,

for an appropriate C(β, L,K) > 0.

Finally, assume in addition that f(x) 6 A and that, when δ > n−3, we may
take N to be independent of δ. Prove that there exists a data-driven bandwidth ĥ and
C ′ ≡ C ′(β, L,K) > 0 such that for every n ∈ N and β ∈ (0, `], we have

E
[{
f̂n,ĥ,K(x)− f(x)

}2] 6 C ′
(

log(en)

n

)2β/(2β+1)

.
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3 Consider the nonparametric regression model

Yi = m(xi) + εi,

for i = 1, . . . , n, where x1 < . . . < xn are fixed and ε1, . . . , εn are independent with
E(εi) = 0 and Var(εi) = 1 for i = 1, . . . , n. For x ∈ R, write down the optimisation
problem solved by the local polynomial estimator m̂n(x) ≡ m̂n(x; p, h,K) of degree p ∈ N0

with bandwidth h > 0 and kernel K. Explain what is meant by a linear estimator of
m(x), and under a positive definiteness condition that you should specify and then assume
throughout, prove that m̂n(x) is such a linear estimator.

Define what is meant by the effective kernel {wp,i(x) ≡ wp,i(x;x1, . . . , xn) : i =
1, . . . , n} of m̂n(x). If R is a polynomial of degree at most p, prove that

1

n

n∑

i=1

wp,i(x)R(xi) = R(x).

For β, L > 0, write down the definition of the Hölder class H(β, L) of functions on [0, 1].
Let H̃(β, L) denote the subclass of H(β, L) consisting of functions f that satisfy

max
j=0,1,...,β0−1

|f (j)(x)− f (j)(x′)| 6 L|x− x′|

for all x, x′ ∈ [0, 1], where β0 := dβe − 1. Assume that m ∈ H̃(β, L), that xi = i/n
for i = 1, . . . , n and that K is bounded and vanishes outside [−1, 1]. By first developing
an appropriate bound on the effective kernel, or otherwise, prove that if p < β0 and
h > 1/(2n), then

|Bias m̂n(x; p, h,K)| 6 C(λ0, p, L,K)hp+γ ,

where λ0 is the smallest eigenvalue of a matrix that you should specify, and where both
C(λ0, p, L,K) > 0 and the universal constant γ > 0 should be specified.
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4 Let (X ,A, µ) be a measure space and let (Y,B) be a measurable space. If g : X → Y
is measurable, define the pushforward measure of µ under g.

State the Lebesgue decomposition theorem. What is meant by an f -divergence
between two probability measures P and Q on (X ,A)?

State and prove the data processing inequality. [You may assume the Radon–
Nikodym theorem.]

Define the χ2-divergence from Q to P , denoted χ2(P,Q). Prove that if P1, . . . , PM

are probability measures on X and A1, . . . , AM ∈ A form a partition of X , then

1

M

M∑

j=1

Pj(Aj) 6
1

M
+

√
1

M

(
1− 1

M

)√√√√ 1

M
inf
Q∈Q

M∑

j=1

χ2(Pj , Q),

where Q denotes the set of all probability distributions on X . [You may assume that
f -divergences are jointly convex.]

END OF PAPER
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