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1 The times to failure of 61 components on a ship were recorded, along with the type
of component (labelled type1, type2, type3) and the position of the component (posout
being 1 for outside and 0 for inside) in the ship. In the (shortened) R code below, mod1
fits an exponential generalised linear model (GLM), and mod2 fits a gamma GLM to these
data.

> summary(mod1,dispersion=1)

Call:

glm(formula = times ~ type + pos, family = Gamma, data = ship)

...

Coefficients:

Estimate Std. Error z value Pr(>|t|)

(Intercept) 0.15032 0.03607 4.168 3.08e-05 ***

type2 -0.01228 0.04776 -0.257 0.797

type3 0.08323 0.06417 1.297 0.195

posout 0.02368 0.04556 0.520 0.603

...

(Dispersion parameter for Gamma family taken to be 1)

Null deviance: 21.061 on 60 degrees of freedom

Residual deviance: 18.185 on 57 degrees of freedom

AIC: 304.48

...

> summary(mod2)

Call:

glm(formula = times ~ type + pos, family = Gamma, data = ship)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.15032 0.02009 7.481 5.02e-10 ***

type2 -0.01228 0.02661 -0.461 0.6463

type3 0.08323 0.03575 2.328 0.0235 *

posout 0.02368 ? 0.933 0.3548

...

(Dispersion parameter for Gamma family taken to be 0.3103711)

Null deviance: 21.061 on 60 degrees of freedom

Residual deviance: 18.185 on 57 degrees of freedom

AIC: 304.48

(a) Show that the gamma distribution with probability density function paramet-
rised as

f(y;α, γ) =
(γ
α

)γ 1

Γ(γ)
yγ−1e−

γ
α
y, y > 0, α, γ > 0,

is an exponential dispersion family in the unknown parameters α, γ. Identify the mean
and variance functions and the canonical link function.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(b) State the log-likelihood of the response variables Y ∈ R61 in the gamma GLM
with the canonical link function and compute the Fisher information matrix with respect
to the coefficient β ∈ R4 of the predictors.

(c) Show that we obtain the same maximum likelihood estimators β̂ in model mod1
and model mod2. State a large sample statement for the asymptotic distribution of β̂ in
the Gamma GLM using your results in (b). Use this to explain how the missing standard
error for the variable posout in model mod2 can be obtained from the one in model mod1
(you do not have to compute its numerical value).

(d) Explain the test that is carried out by the following R code, specifying the null
and alternative hypotheses and the expression for the test statistic. Is the test valid?
What can we conclude from this test?

> 1-pchisq((21.061-18.185)/0.31,df=3, lower.tail=TRUE)

[1] 0.02582103
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2 A data analyst has been asked to build a classifier from training data X1, . . . , Xn ∈
Rp with given associated labels Y1, . . . , Yn ∈ {0, 1}. An (old) book on statistical learning
suggests to implement a support-vector machine solving the constrained optimisation
problem

min
β∈Rp

‖β‖ subject to Yi(X
>
i β) > 1, i = 1 . . . , n.

However, the analyst could not find a solution of this optimisation problem for his data
set.

(a) What would you suggest to the analyst in terms of how the input data and the
optimisation problem should be modified to fit a general hard-SVM?

(b) Define the hard-SVM classifier. Explain the main ideas of this classification
approach.

The data analyst followed your suggestions in (a). Still, there was no solution found.

(c) Explain why the hard-SVM does not have a solution in this case. Give a relaxed
formulation of the constrained optimisation problem in (a) to address this issue. Discuss
how the tuning parameter of this relaxation influences the margin and how it is related to
the hard-SVM.

After learning about the kernel trick, the analyst applied a feature map φ to the
data, yielding Zi = φ(Xi) ∈ Rq for q ∈ N. It turned out that for the transformed data the
hard-SVM classifier now had a solution.

(d) Explain the kernel trick (also called kernel method) for SVMs and state the
optimisation problem solved by a hard-SVM with a kernel, but without penalisation.

The data analyst then applied a logistic classifier to the transformed data, obtaining
the following (shortened) R output.

> model2 <- glm(Y~Z, data = dat, family="binomial")

> summary(model2)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.004 12038.209 -0.001 0.999

X1 9.447 16708.962 0.001 1.000

X2 39.494 25259.925 0.002 0.999

...

(e) Why are the standard errors so large? What modification to the logistic
regression will produce smaller standard errors and more stable estimates?

Part III, Paper 218



5

3 A researcher wants to build an email spam classifier based on a training set of
n = 500 emails. They have hand-picked 10 words/symbols that they believe to have the
highest discriminating power: dollar, winner, password, edu, credit, discount, as, I,
fun, trial, and performed a logistic regression in R. Each row in the dataset represents
one email. The first column (spam) encodes whether an email is spam (class 1) or not
(class 0). The remaining 10 columns count the number of times a particular word/symbol
appears in the email. Part of the R output is shown below.

> model.logit <- glm(spam ~ dollar + winner + password + edu + credit

+ discount + as + I + fun + trial, family = binomial)

> summary(model.logit)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.391451 1.447857 -3.724 0.0002 ***

dollar 1.859318 1.333052 1.395 0.1631

winner 5.680691 1.955451 2.905 0.0037 **

password 0.923072 1.268399 0.728 0.4668

edu -6.890095 1.857351 -3.710 0.0002 ***

credit 2.269523 1.007462 2.253 0.0243 *

discount 1.198028 1.785944 0.671 0.5023

as -3.176676 1.832839 -1.733 0.0831 .

I -1.866328 0.846315 -2.205 0.0274 *

fun 4.347929 1.104687 2.066 0.0388 *

trial 0.864456 1.774681 0.487 0.6262

...

(a) Write down the algebraic form of the fitted model model.logit. How would
you interpret the coefficient dollar? Write down also the algebraic form of the logistic
classifier Ĉ logit and how it is fitted.

(b) Describe algebraically the decision boundary of this classifier. In practice, one
may want to only classify an email as spam if the predicted spam probability is larger
than a given threshold q ∈ (0, 1). Let Ĉ logit

q be the corresponding classifier. Show that

Ĉ logit = Ĉ logit
0.5 . What effect does varying q have on the decision boundary?

Instead of hand-picking significant words, the researcher now wants to include 5000
common English words into the classification. He realised that the logistic regression fit
did not converge.

(c) State the log-likelihood of the model fitted in (a) and explain why logistic
regression does not have a unique solution in this case.

(d) How can principal component analysis (PCA) help in fitting a well-defined
logistic classifier? Explain the main ideas of PCA. Discuss why the principal components
are different from hand-picking significant words and how the researcher can decide how
many principle components should be considered.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) For data X1, . . . , Xn ∈ Rp and d 6 p consider the optimisation problem

argmin
µ,zi,A

n∑

i=1

‖Xi − µ−Azi‖2

over µ ∈ Rp, z1, . . . , zn ∈ Rd with
∑n

i=1 zi = 0 and A = (u1, . . . , ud) ∈ Rp×d, where
u1, . . . , ud are non-vanishing orthogonal vectors in Rp. Find first the solutions µ̂, ẑi of this
optimisation problem for fixed A and then determine Â.
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4 A research team analysed the efficacy of educating students about the health impact
of smoking. Four groups of students were compared according to their exposure to a
television-based smoking prevention program (TV ∈ {0, 1}) and/or to a school-based
curriculum (SC ∈ {0, 1}). Students belonging to the same school were assigned to the
same group. There were 28 schools (recorded in a categorical variable named school),
and each school was assigned randomly to a group. The tobacco and health knowledge for
each student was measured before (PTHK) and after the study (THK). The research team
fitted three different models to the data, producing the following (shortened) R output.

> lm1 <- lm(THK ~ PTHK + TV + SC, data=smoking)

> summary(lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.73734 0.07866 22.088 < 2e-16 ***

PTHK 0.32525 0.02589 12.561 < 2e-16 ***

TV 0.04534 0.06518 0.696 0.487

SC 0.47987 0.06529 7.350 3.15e-13 ***

...

> lme1 <- lmer(THK ~ PTHK + TV + SC + (1 |school), data=smoking, REML=FALSE)

> summary(lme1)

...

AIC BIC logLik deviance df.resid

5381.3 5413.5 -2684.6 5369.3 1594

...

Random effects:

Groups Name Variance Std.Dev.

school (Intercept) 0.0437 0.209

Residual 1.6531 1.286

...

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.78880 0.10696 16.724

PTHK 0.30973 0.02595 11.933

TV 0.02175 0.10530 0.207

SC 0.47023 0.10532 4.465

...

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 218 [TURN OVER]



8

> lme2 <- lmer(THK ~ PTHK + TV + SC + (1 + PTHK|school), data=smoking, REML=FALSE)

> summary(lme2)

...

AIC BIC logLik deviance df.resid

5376.8 5419.9 -2680.4 5360.8 1592

...

Random effects:

Groups Name Variance Std.Dev. Corr

school (Intercept) 0.0001866 0.01366

PTHK 0.0094648 0.09729 1.00

Residual 1.6384188 1.28001

...

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.73214 0.09262 18.701

PTHK 0.30165 0.03208 9.403

TV 0.08805 0.09345 0.942

SC 0.51516 0.09340 5.516

...

(a) Write down algebraically the model fitted by lme1 and state the estimated
values of all parameters. How do you interpret the random and fixed effect intercepts in
the output of lme1 in the context of the study?

(b) Explain the modelling decision behind using school as a random effect in the
models lme1 and lme2. How does it affect the model fit over model lm1? Justify your
answer using the R output.

(c) What is the estimated variance for the response variables in lme1 according to
the R output (you do not have to compute its numerical value)? Why is there no estimate
column for the random effect in model lme1?

(d) The research team wants to use a statistical test to see if lme1 or lme2 fits
the data better. Describe what changes algebraically in model lme2 compared to lme1.
Suggest a valid test and discuss in detail how the corresponding p-value can be computed.
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5 (a) For a set of possible parameters θ1, . . . , θp ∈ R and family of statistical models
MS , where each MS depends on the parameters θi with i in S ⊂ {1, . . . , p}, define
the Akaike Information criterion (AIC) and state the backward-selection rule for model
selection by AIC. Which variable is selected below in the first step after calling the step

function?

> step(lm(medv~., data=Boston))

Start: AIC=1599.85

medv ~ crim + zn + indus + chas + nox + rm + age + dis + rad +

tax + ptratio + lstat

Df Sum of Sq RSS AIC

- indus 1 1.08 11350 1597.8

- age 1 1.69 11351 1597.9

<none> 11349 1599.8

- chas 1 245.31 11595 1608.7

- tax 1 256.28 11606 1609.2

- zn 1 263.59 11613 1609.5

- crim 1 311.49 11661 1611.6

- rad 1 430.71 11780 1616.7

- nox 1 546.10 11896 1621.6

- ptratio 1 1157.70 12507 1647.0

- dis 1 1258.52 12608 1651.1

- rm 1 1744.36 13094 1670.2

- lstat 1 2733.54 14083 1707.0

...

(b) Explain how AIC is related to the bias-variance trade-off.

(c) Let M1 be a normal linear model with p + 1 parameters (for the unknown
coefficient vector β ∈ Rp and the unknown error variance σ2 > 0), and let M2 be a normal
linear model with additional q parameters. Let σ̂21 and σ̂22, respectively, be the maximum
likelihood estimators for σ2 in the two models. Consider now the following:

(i) State the log-likelihood in model M1.

(ii) Show that the AIC value in model M1 is given by

AIC(M1) = n(log(2πσ̂21) + 1) + 2(p+ 1).

(iii) Conclude that M2 has a smaller AIC value if σ̂22/σ̂
2
1 < e−2q/n.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Explain how the AIC value can be obtained from the following (shortened) R

output (you do not have to compute its numerical value).

> lm1 <- lm(y ~ x1 + x2, data=dat)

> summary(lm1)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.4681 0.1917 -18.089 < 2e-16 ***

x1 1.4902 0.1525 9.772 4.17e-16 ***

x2 5.1046 0.1626 31.401 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.359 on 97 degrees of freedom

Multiple R-squared: 0.9126,Adjusted R-squared: 0.9108

F-statistic: 506.5 on 2 and 97 DF, p-value: < 2.2e-16
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6 A data scientist has been given data X ∈ Rn×p, Y ∈ Rn for p = 2. He notices that
the two predictors (columns of X) have suspiciously similar values. He decides to fit two
different models to the data, a linear regression and a Bayesian regression. He obtained
the following (shortened) R-output:

> lm1 <- lm(y ~ x1 + x2 - 1, data=dat)

> lm2 <- brm(y ~ x1 + x2 - 1, data=dat, family = gaussian,

+ prior = c(prior(normal(0, 1))))

> summary(lm1)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 -228.7 235.3 -0.972 0.360

x2 230.6 235.3 0.980 0.356

Residual standard error: 0.08145 on 8 degrees of freedom

Multiple R-squared: 0.9986,Adjusted R-squared: 0.9983

F-statistic: 2953 on 2 and 8 DF, p-value: 3.35e-12

> summary(lm2)

..

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

x1 1.00 0.68 -0.33 2.37 1.00 1183 1476

x2 0.98 0.68 -0.38 2.30 1.00 1187 1481

..

(a) State the prior distribution in the Bayesian model. How are the estimates for
the coefficients x1 and x2 obtained in the Bayesian model?

(b) Suppose now that p > 1 and that X is deterministic with full rank. Consider
for β a prior distribution on Rp with Lebesgue-density π(β) =

∏p
j=1 φ(βj) for a function

φ : R → [0,∞). State the log-likelihood of the observations and show that the density of
the posterior distribution of β given the observations in Y is

π(β|Y ) = C exp


−1

2
〈X>X(β − β̂), β − β̂〉+

p∑

j=1

log φ(βj)




for the least-squares estimator β̂ and a suitable constant C > 0.

(c) Show that Lasso and ridge regression estimators can be obtained as maximum-a-
posteriori estimators from the posterior density in (b) with respect to different φ functions.
Argue that ridge regression is also the posterior mean for the same φ function.

(d) Use (c) to explain why the coefficient estimates for x1 and x2 are different in
the output of the linear and the Bayesian models.

(e) Give a 95% credible interval for x1 using the R output. Discuss the interpretation
of this interval relative to a frequentist 95% confidence interval.
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END OF PAPER

Part III, Paper 218


