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(a) A particle of mass m moves freely in one dimension. The classical Lagrangian
is given by L = 1

2mẋ
2 where x(t) ∈ R, and the corresponding quantum Hamiltonian is

Ĥ = p̂2/2m.

(i) Using operator methods, determine the probability amplitude for the
particle to travel from an initial position xi at t = 0 to a final position
xf at time t = T . We call this amplitude the free propagator. [Recall∫∞
−∞ dy e

−ay2 =
√
π/a.]

(ii) Find the trajectory x(t) which minimizes the classical action, and use it
to derive the free propagator (up to a position-independent, multiplicative
factor).

(b) A particle of mass m moves freely along a circle of radius R. The classical
Lagrangian is given by L = 1

2mR
2θ̇2, where θ the angle corresponding to the particle’s

position. The corresponding quantum system has energy eigenstates |n〉 with energy
eigenvalues En = n2~2/2mR2. You can take as given that the normalized, energy
eigenfunctions are 〈θ|n〉 = 1√

2π
einθ.

(i) Using operator methods, determine the probability amplitude, or propag-
ator, for the particle to travel from an initial angle θi at t = 0 to a final
angle θf at time t = T . You may leave the answer in the form of an infinite
sum over the energy eigenvalues of the system.

(ii) Find all classical paths satisfying the initial and final conditions above and
evaluate the classical action of each path. Using the identity

∞∑

j=−∞
f̃(φ+ 2πj) =

1

2π

∞∑

n=−∞
f
( n

2π

)
einφ

where f̃(κ) =
∫∞
−∞ dx f(x) e2iπκx [equivalently, f(x) =

∫∞
−∞ dκ f̃(κ)e−2iπκx],

relate the sum over the classical paths considered above to the propagator.

(c) Without performing any explicit calculation, describe how the derivations above
would need to be changed if there were a nontrivial potential, e.g. V (x) in part (a) or
V (cos θ) in part (b).

Part III, Paper 304



3

2

(a) The classical action of a real scalar field φ(x) in 4 Euclidean dimensions is given
by

Sa =

∫
d4x

[
1

2
∂µφ∂

µφ+
1

2
m2φ2 +

λ

4!
φ4
]

where 0 < λ � 1. Write down the momentum-space Feynman rules for this theory, with
a brief justification for each rule.

Let V
(4)
1 (p1, p2, p3, p4) be the 4-point vertex function, i.e. the sum of one-particle

irreducible (1PI) diagrams with 4 external legs and 1 loop. Draw the Feynman graphs

which contribute to V
(4)
1 (p1, p2, p3, p4). Using the Feynman rules, write down integral

expressions for these diagrams. Introduce an explicit momentum cutoff Λ, evaluate the
integral, and determine whether the integrals converge or diverge as Λ→∞.

Take as given that we can infer a physical value λphys from experiment. What is
the renormalized coupling, λa in the on-shell scheme? [Hint: We expect 0 < λa � 1.]

(b) Let us introduce heavy ghost fields, i.e. spinless, Grassmann-valued fields η(x)
and η̄(x) with mass M � m, by taking our action to be S = Sa + Sb, where

Sb =

∫
d4x

[
c1∂µη̄ ∂

µη + c2M
2η̄η + c3λη̄φ

2η
]
.

Write down the additional Feynman rules coming from Sb. Choose values for the numerical
coefficients c1, c2, and c3 so that the ghost propagator is equal to the scalar propagator (if
we were to replace M by m), and so that the ghost-scalar vertex is equal to the φ4 vertex.

In the theory with action S, use the Feynman rules to determine V
(4)
1 (p1, p2, p3, p4),

again the one-loop vertex function with 4 external φ legs. What is the on-shell renormalized
coupling, λb, in this theory? [Hint: We expect 0 < λb � 1.]

(c) Assume that we are interested in calculating scattering amplitudes, such as 2→ 2
scattering of scalar particles, where all initial and final momenta are small compared to Λ
and M . Will predictions using the theories in parts (a) and (b) differ? Why or why not?

[Hint: You may find the following identities useful:

I.

∫
d4k

(2π)4
f(k2) =

1

16π2

∫
dk2 k2f(k2)

II.

∫ B

A

ds

(k2 + s)n
= − 1

n− 1

1

(k2 + s)n−1

∣∣∣∣
B

A

. ]
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In Euclidean spacetime, the QED Lagrangian is

L =
1

4
FµνF

µν + ψ̄( /D +m)ψ

where Fµν = ∂µAν − ∂νAµ and /D = γµ(∂µ − ieAµ).

(a) Show that the Lagrangian is invariant under global U(1) transformations of the
form ψ(x) 7→ eiαψ(x), ψ̄(x) 7→ ψ̄(x)e−iα, and Aµ(x) 7→ Aµ(x). Use this invariance to show
that the current jµ(x) = ψ̄(x)γµψ(x) is conserved.

(b) Derive the Schwinger–Dyson equation

∂µ〈jµ(x)ψ(x1)ψ̄(x2)〉 = −
[
δ(4)(x− x1)− δ(4)(x− x2)

]
〈ψ(x1)ψ̄(x2)〉 .

(c) Use the result of (b) to derive the Ward–Takahashi identity involving the vertex
function V µ

3 and the fermion propagator G(/p):

iqµV
µ
3 (q, p1, p2) = ie[G−1(/p1)−G−1(/p1 − /q)] .

(d) Explain what the Ward–Takahashi identity implies for renormalization of terms
in the Lagrangian, for example in the on-shell renormalization scheme. Comment on what,
if any, results could hold nonperturbatively.
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Let Aaµ(x) be the N2 − 1 components of a gauge field Aµ(x) in SU(N) gauge
theory. Under an infinitesimal gauge transformation parametrized by α(x) = αa(x)T a,
Aµ(x) 7→ Aµ(x) + δAµ(x), where

δAµ(x) =
1

g
∂µα(x)− i[Aµ(x), α(x)] =:

1

g
Dµα(x)

Here g is the coupling, and T a are the Hermitian generators of su(N) satisfying [T a, T b] =
ifabcT c.

(a) How does the field strength Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] transform under
this gauge transformation? Show that the Yang–Mills Lagrangian LYM = 1

4F
a
µνF

µν,a is
gauge-invariant.

(b) Introducting anticommuting fields ca(x) and c̄a(x), as well as a real field Ba(x),
define an operator s which acts on the fields in the following way

sAµ = Dµc sB = 0

sc =
ig

2
[c, c] sc̄ = B .

and which obeys the rule s(XY ) = (sX)Y ±X(sY ), with the + sign if X is commuting
and − if X is anticommuting. Show that s is a nilpotent operator, i.e. that s2 acting on
any of the fields Φ ∈ {Aµ, c, c̄, B} yields s2Φ = 0.

(c) Consider the Lagrangian

L =
1

4
F aµνF

µν,a + s

(
c̄aL[Aa]− ξ

2
c̄aBa

)

where L is a linear operator, in particular sL[Aa] = L[sAa]. Does sL = 0?

By applying the s operator, put L in a more familiar form.

(d) Consider the two cases: (i) L[Aa] = ∂µAaµ and (ii) L[Aa] = nµAaµ, where nµ is
a constant unit vector. In each case, explain the meaning of each term in L and draw
the one-loop Feynman diagrams which contribute (non-vanishingly) to the gauge field
propagator. [You do not need to explicitly determine any propagators or vertices.]
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