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The spacetime outside a spherical planet of mass M is described by the Schwarzschild
metric

ds® = —f(r)dt* + f(r)"'dr® + r?df® + r*sin® 0d¢®  f(r)=1-—

where (6, ¢) can be regarded as spherical polar coordinates.

A gyroscope orbits the planet. The orbit is circular, with r = R > 3M, 0 = 7/2, and
angular velocity d¢/dt = Q. The spin axis of the gyroscope points in the direction of a
vector s* that undergoes parallel transport around the orbit. When ¢t = 0, s® points in
the direction of 0/0r.

(a)(i) Show that s%u, is constant where u® is the 4-velocity of the gyroscope. (ii) Deduce
that s%u, = 0.
(b) Show that, in the coordinate basis defined by the Schwarzschild coordinates, the

components s* satisfy the differential equation

dst
% + I}, s" 4+ QI ¥ =0

(¢) Show that s? vanishes for ¢ > 0.

(d) Use the results of part (a) to write s* in terms of s? and hence show that s” and s?
satisfy a pair of first order coupled differential equations. Show that the solution of these
equations is

Q
~“OR sin(Q't)

where A is an arbitrary positive constant and €’ is a constant that you should determine
in terms of M, R, (2.

s" = Acos(Q't) s =

(e) Explain why s%s, must be constant. Hence determine 2 in terms of M and R. Show
that after one orbit the spin axis of the gyroscope has rotated through an angle

o)
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(a)(i) The action for a 3-form field H g, is

1

Sy = /d43:\/—g <—6HabcH“bc> .

What is the energy-momentum tensor of this field? Simplify your answer as much as
possible. [You may assume standard results for variations of the metric.]

(ii) Consider a theory of gravity in which the “matter” is a covector field w, described by

a diffeomorphism-invariant action Syatter which depends on g4, w, and their derivatives.
Let Ty be the energy-momentum tensor and define

1 6Smatter

b= V=9 Owa

Show that
VaT“b = Eavbwa - Va (anb)

and hence deduce that the energy-momentum tensor is conserved if the covector field
satisfies its equation of motion. [You may assume standard results for the Lie derivative.]

(b) Let ¥ be a timelike hypersurface in a Lorentzian spacetime (M,g). Let n, be a
covector field defined in a neighbourhood of ¥ such that n, is normal to ¥ and satisfies

nen® = 1. The extrinsic curvature tensor is defined by K(X,Y) = —n, (VXHYHY where

X, Y are arbitrary vector fields and || denotes projection onto X, e.g. (X)* = hj X b where
hi = 6§ — nny,.

(i) Explain why this defines a (0,2) tensor and derive the formula K, = hShEV n,.
(ii) Prove that K = Kp,.

(iii) Let U® be tangent to an affinely parameterized geodesic in (M, g) that intersects X
at a point p. Show that the following equation holds at p

UV, (Ubny) = KoppUU? + fU

where f = U*nV n,.

(iv) X is totally geodesic iff any geodesic in (M, g) that starts on ¥ and is initially tangent
to 3 remains within 3. Prove that if ¥ is totally geodesic then K, = 0.
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(a) The retarded solution of the linearized Einstein equation is

bt = 4 [ e Bl 1)
MUY -

[x — x|

(i) Show that
_ 9.
hij(t, X) ~ ;Iij(t — 7“)
where i,j € {1,2,3}, r = |x|, I;; should be defined, and you should explain carefully any
assumptions or approximations that you make.
(ii) Show that
_ 22 -
hoi(t,x) ~ —==1yj(t — 1)
explaining any further assumptions that you make.

(b) A thin rod has mass m and length 2a. It rotates non-relativistically with angular
velocity w in the xy plane. The energy-density of the rod is

Too(t,x) = m/ dlé(x — Lcoswt)d(y — £sinwt)d(z)

aJ_a

(i) Determine h;; for 7 > a. What is the frequency of the gravitational waves emitted
by the rod? Show that on the positive z-axis, the time-dependent part of the linearized
gravitational field has the same form as a gravitational plane wave propagating in the
z-direction, whose amplitude is proportional to 1/z, and whose polarization is a linear
combination of + and x polarizations.

[You may assume without proof hoo(t,x) ~ 2 + %%Iw (t—r)./

(ii) Calculate the average power emitted by the rod in gravitational waves.
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The three-dimensional Gédel spacetime is (R3, g) where
g = —(dt + V2e%dy)? + da® + > dy?

where —oo < t,x,y < 0.

(a) A basis of vector fields is

) ) L0 )
60—& 61—% €y = ¢€ %_ﬁa

Show that this basis is orthonormal and that the dual basis of 1-forms is

e = dt + V2e%dy el =do e? = edy
(b) The connection 1-forms are determined by de* = —w*, A €”. Show that
wop = Ae? wo2 = Be' wia = Ce® + De?

for certain constants A, B, C, D whose values you should determine.

(c) Calculate the curvature 2-forms using O, = dw., + wy, A w”,. Hence calculate the

. . : _ 1 o
Riemann tensor components using 6, = 5 Ryuwpse? Ne’.

(d) Calculate the Ricci tensor. Hence show that this spacetime satisfies Einstein’s equation
with a cosmological constant A where the matter is a pressureless perfect fluid: Ty, = puqup

with velocity u® = efj. You should give expressions for A and p.

(e) Write down two Killing vector fields of the above metric. Show that the map
¢s ¢ (t,z,y) — (t,x + s,e ®y) defines a 1-parameter group of isometries. Hence find
another Killing vector field. Show that any point can be mapped to any other point by

an isometry.

END OF PAPER
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