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The spacetime outside a spherical planet of mass M is described by the Schwarzschild
metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 f(r) = 1 − 2M

r

where (θ, φ) can be regarded as spherical polar coordinates.

A gyroscope orbits the planet. The orbit is circular, with r ≡ R > 3M , θ ≡ π/2, and
angular velocity dφ/dt = Ω. The spin axis of the gyroscope points in the direction of a
vector sa that undergoes parallel transport around the orbit. When t = 0, sa points in
the direction of ∂/∂r.

(a)(i) Show that saua is constant where ua is the 4-velocity of the gyroscope. (ii) Deduce
that saua = 0.

(b) Show that, in the coordinate basis defined by the Schwarzschild coordinates, the
components sµ satisfy the differential equation

dsµ

dt
+ Γµtνs

ν + ΩΓµφνs
ν = 0

(c) Show that sθ vanishes for t > 0.

(d) Use the results of part (a) to write st in terms of sφ and hence show that sr and sφ

satisfy a pair of first order coupled differential equations. Show that the solution of these
equations is

sr = A cos(Ω′t) sφ = − AΩ

Ω′R
sin(Ω′t)

where A is an arbitrary positive constant and Ω′ is a constant that you should determine
in terms of M,R,Ω.

(e) Explain why sasa must be constant. Hence determine Ω in terms of M and R. Show
that after one orbit the spin axis of the gyroscope has rotated through an angle

α = 2π

[
1 −

(
1 − 3M

R

)1/2
]
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(a)(i) The action for a 3-form field Habc is

SH =

∫
d4x
√−g

(
−1

6
HabcH

abc

)
.

What is the energy-momentum tensor of this field? Simplify your answer as much as
possible. [You may assume standard results for variations of the metric.]

(ii) Consider a theory of gravity in which the “matter” is a covector field ωa described by
a diffeomorphism-invariant action Smatter which depends on gab, ωa and their derivatives.
Let Tab be the energy-momentum tensor and define

Ea =
1√−g

δSmatter

δωa

Show that
∇aT

a
b = Ea∇bωa −∇a (Eaωb)

and hence deduce that the energy-momentum tensor is conserved if the covector field
satisfies its equation of motion. [You may assume standard results for the Lie derivative.]

(b) Let Σ be a timelike hypersurface in a Lorentzian spacetime (M, g). Let na be a
covector field defined in a neighbourhood of Σ such that na is normal to Σ and satisfies

nan
a = 1. The extrinsic curvature tensor is defined by K(X,Y ) = −na

(
∇X‖Y‖

)a
where

X,Y are arbitrary vector fields and ‖ denotes projection onto Σ, e.g. (X‖)a = habX
b where

hab = δab − nanb.
(i) Explain why this defines a (0, 2) tensor and derive the formula Kab = hcah

d
b∇cnd.

(ii) Prove that Kab = Kba.

(iii) Let Ua be tangent to an affinely parameterized geodesic in (M, g) that intersects Σ
at a point p. Show that the following equation holds at p

Ua∇a(U bnb) = KabU
aU b + fU bnb

where f = Uanc∇cna.

(iv) Σ is totally geodesic iff any geodesic in (M, g) that starts on Σ and is initially tangent
to Σ remains within Σ. Prove that if Σ is totally geodesic then Kab = 0.
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(a) The retarded solution of the linearized Einstein equation is

h̄µν(t,x) = 4

∫
d3x′

Tµν(t− |x− x′|,x′)
|x− x′|

(i) Show that

h̄ij(t,x) ≈ 2

r
Ïij(t− r)

where i, j ∈ {1, 2, 3}, r = |x|, Iij should be defined, and you should explain carefully any
assumptions or approximations that you make.

(ii) Show that

h̄0i(t,x) ≈ −2x̂j
r
Ïij(t− r)

explaining any further assumptions that you make.

(b) A thin rod has mass m and length 2a. It rotates non-relativistically with angular
velocity ω in the xy plane. The energy-density of the rod is

T00(t,x) =
m

2a

∫ a

−a
d` δ(x− ` cosωt)δ(y − ` sinωt)δ(z)

(i) Determine h̄ij for r � a. What is the frequency of the gravitational waves emitted
by the rod? Show that on the positive z-axis, the time-dependent part of the linearized
gravitational field has the same form as a gravitational plane wave propagating in the
z-direction, whose amplitude is proportional to 1/z, and whose polarization is a linear
combination of + and × polarizations.

[You may assume without proof h̄00(t,x) ≈ 4m
r +

2x̂ix̂j
r Ïij(t− r).]

(ii) Calculate the average power emitted by the rod in gravitational waves.
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The three-dimensional Gödel spacetime is (R3, g) where

g = −(dt+
√

2exdy)2 + dx2 + e2xdy2

where −∞ < t, x, y <∞.

(a) A basis of vector fields is

e0 =
∂

∂t
e1 =

∂

∂x
e2 = e−x

∂

∂y
−
√

2
∂

∂t

Show that this basis is orthonormal and that the dual basis of 1-forms is

e0 = dt+
√

2exdy e1 = dx e2 = exdy

(b) The connection 1-forms are determined by deµ = −ωµν ∧ eν . Show that

ω01 = Ae2 ω02 = Be1 ω12 = Ce0 +De2

for certain constants A,B,C,D whose values you should determine.

(c) Calculate the curvature 2-forms using Θµν = dωµν + ωµρ ∧ ωρν . Hence calculate the
Riemann tensor components using Θµν = 1

2Rµνρσe
ρ ∧ eσ.

(d) Calculate the Ricci tensor. Hence show that this spacetime satisfies Einstein’s equation
with a cosmological constant Λ where the matter is a pressureless perfect fluid: Tab = ρuaub
with velocity ua = ea0. You should give expressions for Λ and ρ.

(e) Write down two Killing vector fields of the above metric. Show that the map
φs : (t, x, y) 7→ (t, x + s, e−sy) defines a 1-parameter group of isometries. Hence find
another Killing vector field. Show that any point can be mapped to any other point by
an isometry.
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