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1

(a) Define the space of Schwartz functions S(Rn) and the space of tempered distributions
S ′(Rn), specifying the notion of convergence in each. Show that a linear form
u : S(Rn) → C belongs to S ′(Rn) iff 〈u, ϕm〉 → 0 for each sequence ϕm that tends to
zero in S(Rn).

(b) Define the Fourier transform on S(Rn) and S ′(Rn).

(i) For ϕ ∈ S(Rn) define the dilation by t > 0 by δtϕ(x) = ϕ(tx). Using a duality
argument, show that this definition extends to u ∈ S ′(Rn) via

〈δtu, ϕ〉 = t−n
〈
u, δ1/tϕ

〉
∀ϕ ∈ S(Rn)

and verify that δtu ∈ S ′(Rn).

(ii) Call u ∈ S ′(Rn) homogeneous of degree σ if δtu = tσu for t > 0. Show that if
u ∈ S ′(Rn) is homogeneous of degree σ then û is also homogeneous and find its
degree of homogeneity.

(c) For 0 < α < n consider uα ∈ S ′(Rn) defined by

〈uα, ϕ〉 =

∫
|x|−αϕ(x) dx.

Show that ûα(λ) = cα|λ|−β where β is a constant you should determine and

cα =
2n−αΓ

(
n−α
2

)

Γ
(
α
2

) πn/2

where Γ(ω) =
∫∞
0 tω−1e−t dt for ω > 0.

[You will find it useful to use the identity

|x|−α =
1

Γ
(
α
2

)
∫ ∞

0
τα/2e−τ |x|

2 dτ

τ

and suitably interchange orders of integration.]
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2 Let X ⊂ Rn be open. Define the spaces E(X) and E ′(X), specifying the notion of
convergence on each.

(a) Show that for u ∈ E ′(Rn), the Fourier transform û ∈ S ′(Rn) can be identified
with the smooth function λ 7→ û(λ) =

〈
u(x), e−iλ·x

〉
and show that there exists an N > 0

such that |û(λ)| . 〈λ〉N .

Hence prove that for each v ∈ E ′(X), there exists a finite collection of continuous
functions with compact support, {fα}, such that

v =
∑

α

∂αfα in E ′(X).

(b) Let δ0 ∈ D′(R) denote the Dirac delta supported at zero. Establish the following:

(i) If ρ ∈ D(R) with ρ(0) = 1 then δ0 = ρδ0;

(ii) If H denotes the Heaviside function, then δ0 = (xH)′′;

(iii) If ϕ ∈ D(R) and u ∈ D′(R) then ϕu′′ = ϕ′′u− 2[ϕ′u]′ + [ϕu]′′.

Using parts (i)–(iii), find explicit examples of continuous functions with compact support,
f0, f1, f2, such that

δ0 = f0 + f ′1 + f ′′2 in D′(R).

3

State and prove the Malgrange-Ehrenpries theorem. Your proof should involve the
construction of an element of D′(Rn) which depends on a suitable “Hörmander staircase”.

Provide explicit Hörmander staircases for the following partial differential operators
in two variables, justifying your answers:

(i)
∂2

∂x2
− ∂2

∂y2
; (ii)

∂2

∂x2
+

∂2

∂y2
; (iii)

∂

∂x
− ∂2

∂y2
.

You are not required to compute the corresponding fundamental solutions.
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