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Let f : Rn → R be a convex function, and assume that minx∈Rn f(x) exists and is
finite. Recall that the proximal operator associated to f is defined by

proxf (x) = argmin
u∈Rn

{
f(u) +

1

2
‖u− x‖22

}
.

(a) Give the definition of a subgradient of f at a point x ∈ Rn. State (without proof)
a necessary and sufficient condition to have u = proxf (x) in terms of the subdifferential

of f . [5]

(b) The proximal point algorithm for minimizing f on Rn proceeds as follows:
starting from any x0 ∈ Rn take

xk+1 = proxtf (xk), k = 0, 1, . . . (1)

where t > 0 is some fixed step size.

(i) Show that for any integer k > 0 and any u ∈ Rn we have

f(u) > f(xk+1) +
1

t
(xk − xk+1)

T (u− xk+1). [5]

(ii) Deduce that for any u ∈ Rn we have

t(f(xk+1)− f(u)) 6 1

2
(‖u− xk‖22 − ‖u− xk+1‖22). [10]

(iii) Deduce that algorithm (1) satisfies, for any integer k > 1

f(xk)− f∗ 6 ‖x0 − x∗‖22
2kt

. [10]

(c) For t > 0 define the function

Mf (x) = min
u∈Rn

{
f(u) +

1

2t
‖u− x‖22

}
.

(i) State the definition of the Fenchel conjugate of a function h. [4]

(ii) Show that Mf is always smooth, even if f is not. [Hint: write Mf (x) =
1
2t‖x‖22− 1

t g
∗(x) where g is a strongly convex function, and g∗ denotes the Fenchel conjugate

of g]. [8]

(iii) What is ∇Mf (x)? Deduce that (1) is a gradient descent algorithm for a
well-chosen function that you should specify. You may use (without proof) the expression
for the gradient of the Fenchel conjugate of a strongly convex function that we saw in
lectures. [8]
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(a) Let f : Rn → R ∪ {+∞} be a convex function, and consider the optimization
problem

min
x∈Rn

f(x) subject to Ax = b

where A ∈ Rm×n and b ∈ Rm. State the definition of the Lagrangian and the dual problem.
Explain what is weak duality, strong duality and give sufficient conditions to have strong
duality. [10]

Let Q be a real symmetric positive definite n× n matrix and consider the optimiz-
ation problem

min
x∈Rn

1

2
xTQx subject to Ax > b, (1)

where A ∈ Rm×n, b ∈ Rm and Ax > b is interpreted component wise, i.e., (Ax)i > bi for
all i = 1, . . . ,m.

(b) By rewriting problem (1) as

min
x∈Rn,s∈Rm

1

2
xTQx+ I(s) subject to Ax− b− s = 0,

where I(s) is the indicator function of Rn
+ (I(s) = 0 if s > 0 and +∞ otherwise), write

the Lagrangian dual of the problem, and show that it has the form

max
z∈Rm

h(z) subject to z > 0 (2)

where h(z) is a concave quadratic function that you should specify explicitly in terms of
A, b and Q. Give explicit sufficient conditions (in terms of A and b only) for (2) to have
the same optimal value as (1). [10]

(c) (i) Write down the projected gradient ascent method to solve (2). Your iterations
should be completely explicit. [10]

(ii) Is the function −h(z) strongly convex? If yes, give (without proof) a lower
bound on the strong convexity parameter. Also give (without proof) an upper bound on
the Lipschitz constant of the gradient of h. [5]

(iii) Give, without proof, an upper bound on the number of iterations k of
projected gradient ascent that are needed to reach a point zk such that h∗ − h(zk) 6 ε,
where h∗ is the optimal value of (2). Your bound should have the form k = O(cφ(ε)) where
c is a constant and φ is a function that you should both specify. How many iterations
would be needed if we used the fast projected gradient method of Nesterov? [5]

(iv) Write the projected gradient descent for the original problem (1). Explain
why using the projected gradient ascent for (2) might be preferable over the projected
gradient descent algorithm for (1). [10]
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(a) State the definition of a firmly nonexpansive map T : Rn → Rn. Show that
the proximal operator proxf of a convex lower semi-continuous function f is firmly

nonexpansive. [8]

(b) The Douglas-Rachford algorithm to minimize the sum of two convex functions
f(x) + h(x) is given by: 




xk+1 = proxf (yk − zk)

yk+1 = proxh(xk+1 + zk)

zk+1 = zk + (xk+1 − yk+1).

(1)

Show that by letting wk+1 = xk+1 + zk, the iterates can be written as wk+1 = T (wk) for
some map T : Rn → Rn. Show that T is firmly nonexpansive. [8]

(c) Let C,D ⊂ Rn be two closed convex sets. We are interested in finding a point in
the intersection C ∩D, which we assume is nonempty, using only the Euclidean projection
operators PC and PD on C and D respectively.

(i) Show how the Douglas-Rachford algorithm can be used to achieve this. [4]

(ii) We now consider an alternative algorithm. Let dD(x) = miny∈D
{
1
2‖y − x‖22

}
.

Show that dD is convex, and that a point in C ∩D can be obtained by finding a solution
to the convex optimization problem

min{dD(x) : x ∈ C}. [8](2)

(iii) Show that dD is 1-smooth with respect to the Euclidean norm, and give an
expression for ∇dD(x). [Hint: express dD(x) = ‖x‖22/2 − g∗(x) where g∗ is the Fenchel
conjugate of a 1-strongly convex function.] [8]

(iv) Write down the projected gradient descent method for (2); your answer should
involve only PC and PD, the Euclidean projection operators on C and D. [4]

(d) Assume now we have ` closed convex sets C1, . . . , C` ⊂ Rn, and we are interested
in finding a point in their common intersection C1∩· · ·∩C`, which we assume is nonempty.
Show that this problem can be reduced to a problem of finding a point in the common
intersection of a convex set C ⊂ Rn` and a subspace D ⊂ Rn`. Show that the projections
on C and D can be computed explicitly, in terms of the projection operators PC1 , . . . , PC`

on C1, . . . , C` respectively. [10]
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