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1 (a) Consider a black hole with mass MBH and spin sBH, shining at the fraction f
of the Eddington luminosity, LEdd. Derive the expression for the Eddington luminosity
knowing that the gas is characterised by some typical opacity κ. Then taking advantage
of the force multiplier, M(r) = arad(r)

aCompton(r)
, where arad(r) is the total acceleration due to

radiation pressure force at distance r and aCompton(r) is the radiation pressure acceleration
in the Compton limit, write down the appropriate momentum equation for the spherically
symmetric outflow. Discuss in which cases this outflow can exist based on the possible
range of M(r) values.

Estimate now the black body temperature of this source, TBB, close to the innermost
stable circular orbit assuming that the black body radiation is a good description of the
radiated power. How does TBB depend on the black hole mass and spin? Outline the
physical meaning of these dependences.

(b) A supermassive black hole accretes at a constant rate such that at z = 6 its mass
is ∼ 5·108 M�, where M� is the solar mass. Assuming radiative efficiency ε = 0.1, estimate
the possible range of lifetimes of this quasar. Is it possible to put relevant constraints on
the seed mass and the seeding redshift for this black hole growth to happen? You may
consider either sub- or super-Eddington accretion.

Another supermassive black hole with the same mass at z = 6 accumulated its mass
through Eddington-limited accretion. Assuming again ε = 0.1 estimate the possible range
of quasar lifetimes of this source and compare it to the previous estimates.

Hence deduce what next-generation high redshift observations of quasars probing
down to sufficiently low luminosities can tell us about the assembly of supermassive black
holes.

Which two arguments could you use to constrain the stellar mass of the host galaxy
of these quasars and how large you expect it to be? What does the presence of high
redshift quasars tells us about the stellar mass assembly of the host galaxies?

[Recall z = 6 corresponds to ∼ 1 Gyr; M� ∼ 2 · 1033 g; c ∼ 3 · 1010 cm s−1, where
c is the speed of light; LEdd ∼ 1.3 · 1038MBH

M�
erg s−1 in the electron scattering regime;

tEdd = cσT
4πGmp

∼ 0.45 Gyr, where σT is the Thomson cross-section, G is the gravitational

constant and mp is the proton mass; exp(20) ∼ 5 · 108 and exp(6.3) ∼ 5 · 102.]
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2 (a) Detail the ten assumptions inherent to the standard Shakura-Sunyaev accretion
disc. Hence, write down the expression for the mass accretion rate through this disc, ṁ,
starting from the generic mass conservation equation.

(b) Recall that the φ component of the Navier-Stokes equation can be expressed as

Σ

(
uR
∂uφ
∂R

+
uRuφ
R

)
=

1

R2

∂

∂R

(
νΣR3∂(uφ/R)

∂R

)
, (1)

where R is the radius in cylindrical-polar coordinates, uR and uφ are radial and azimuthal
velocities, Σ is the surface density of the accretion disc, and ν is the kinematic viscosity.
With the aid of this equation, or otherwise, derive an expression for the uR which depends
on ν, Σ and R only.

(c) Consider now an astrophysical system where the matter is injected at a constant
rate ṁ0 into Keplerian orbits at radius R0 around the central supermassive black hole.
Within R0 the system behaves as the standard Shakura-Sunyaev disc. Outside R0 there
is a steady distribution of mass that extends to very large radii and removes the angular
momentum of the matter accreting within R0.

Show that in a steady state

νΣ =
ṁ0

3π

[
1 −

(
RISCO

R

) 1
2
]
, (2)

for R < R0, where RISCO is the radius of the innermost stable circular orbit, and

νΣ =
ṁ0

3π

[(
R0

R

) 1
2

−
(
RISCO

R

) 1
2
]
, (3)

for R > R0.

[Hint: Consider carefully boundary conditions at RISCO and R0.]

(d) Viscous dissipation rate of a Shakura-Sunyaev accretion disc, Fdiss, is given by

Fdiss = νΣR2

(
∂Ω

∂R

)2

, (4)

where Ω is the angular velocity. Derive an expression for the radial dependence of the
effective temperature, Teff , of the disc under the black body assumption.

Find the radius where Teff is maximal and determine how Teff scales with radius at
large distances.

Now calculate the total luminosity emitted by the disc and comment how it compares
with the rate of gravitational energy loss due to inflow.

Compare the emitted luminosity outside some radius R with the gravitational energy
released at radius R. What can you deduce from this comparison?
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3 (a) Consider a quasar generating a spherically symmetric Eddington wind which
is radiation-pressure-driven with gas optical depth due to electron scattering, τe.s. ≈ 1.
Sketch the different spatial regions that exist starting from the quasar radially outwards
to the unperturbed interstellar medium.

Describe the physical reasons that may lead either to an energy-driven or momentum
driven outflow and write down the appropriate relation for the rate of change of momentum
of the shocked, swept-up shell caused by the wind. Explain the physical reason for the
possible momentum-boost of the shell in the energy-driven limit.

(b) A radiation-pressure-driven outflow is generated by a quasar with luminosity
L. If the optical depths in the UV and IR are, τUV and τIR, respectively, write down the
general expression for the critical luminosity, Lcrit, where the radiation pressure balances
gravity.

Assuming now that the host galaxy is well described by the singular isothermal
sphere with a constant velocity dispersion σ and gas fraction fgas, show that the critical
luminosity in the IR, single-scattering and optically thin UV limit is

Lcrit,IR =
8πcσ2r

κIR
, Lcrit,s.s. =

4cfgasσ
4

G
, Lcrit,UV =

8πcσ2r

κUV
, (1)

respectively, where r is the radial distance from the quasar, c is the speed of light, G is
the gravitational constant, κIR is the IR opacity, and κUV is the UV opacity.

(c) Within the same host galaxy as in (b), the quasar luminosity L is now such that
it exceeds the critical luminosity. Derive the radial velocity profile of the steady-state wind
this quasar would drive in both the single-scattering and optically thin UV limit. Discuss if
the wind is accelerating or decelerating (at small and large distances) and find the location
of the maximum wind velocity for both cases. What is the physical explanation for these
results?

[Hint: You may assume that the wind velocity at the initial launch radius is negligible.]
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