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(a) State Harris’s inequality, or the FKG inequality, making sure to define the relevant
notions. State and prove Janson’s inequalities.

(b) Let G ∼ G(n, p). Show that

P(G 6⊃ K3) =

{
e−Θ(p3n3) if 0 < p 6 n−1/2;

e−Θ(pn2) if n−1/2 6 p < 1/2.

(c) Show there exists a C > 0 for which the following holds. If p = Cn−3/4 and
G ∼ G(n, p), then G contains at least n/10 vertex disjoint copies of C4, with high
probability.
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(a) For s, k > 1 and a graph G, define what it means for R ⊆ V (G) to be (s, k)-rich.

Now let G be a graph with |G| = n and e(G) = m. Let r, s, k, t > 1 be such that

(2m)t

n2t−1
−
(
n

s

)(
k

n

)t

> r.

Show that there exists a (s, k)-rich set R ⊆ V (G), with |R| > r.

(b) Let H be a bipartite graph with bipartition A ∪ B where every vertex x ∈ B has
deg(x) 6 s. Let G be a graph for which there exists exists a (s, |H|)-rich set R ⊆ V (G)
with |R| > |A|. Show that G ⊇ H.

(c) Let H be a graph. The Ramsey number r(H) is the smallest n for which every 2-
colouring of the edges of Kn contains a monochromatic copy of H. In other words, r(H)
is the minimum n so that every partition E(Kn) = G1 ∪G2, has the property that either
G1 ⊃ H or G2 ⊃ H.

We define Qd to be the hypercube graph in dimension d. Here V (Qd) = {0, 1}d and two
vertices x, y ∈ {0, 1}d are adjacent when x, y differ in exactly one coordinate. Show that

r(Qd) 6 24d.
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(a) State Markov’s inequality and state Chebychev’s inequality.

Now show that if p� n−1 and G ∼ G(n, p) then

lim
n→∞

P(G contains at least 100 triangles) = 1.

[You may assume Markov and Chebychev without proof]

(b) Let P = Pn be a monotone graph property. Define what it means for a function p∗(n)
to be a threshold function for P .

(c) Let P = Pn be a monotone graph property and let p(n) ∈ (0, 1) be a sequence for
which p(n) = o(1) and

Pp(n)(G satisfies P) = 1/10

for all n, where G ∼ G(n, p). Show that p(n) is a threshold function for P .

(d) For this part you may assume, without proof, the following theorem:

If p > 10(log n)/n then G ∼ G(n, p) contains a Hamiltonian cycle with high probability.

Show that there exists a C > 0 so that the following holds. If p > C(log n)/n then G
contains a cycle of length ` for each 3 6 ` 6 n, with high probability.
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(a) State the regularity lemma. Make sure to state the definition of a ε-uniform pair
carefully.

(b) State and prove the triangle embedding lemma.

(c) Let p ∈ (0, 1) and ε > 0 be fixed and let G ∼ G(n, p). Show that, with high probability,

(p− ε)|A||B| 6 e(A,B) 6 (p + ε)|A||B|

for all disjoint A,B ⊆ V (G) with |A|, |B| > n/ log n.

[You may use Chernoff’s inequality, without proof, so long as you state it. You may
also use Markov’s inequality without proof]

(d) Let p ∈ (0, 1) be fixed and let G ∼ G(n, p). Show that, for all ε > 0, the largest
triangle-free subgraph of G has at most (1 + ε)pn2/4 edges, with high probability.

[You may use Turán’s theorem without proof]
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