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1 (a) Prove that the subgroup

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉

of SL2(Z) is free of rank 2. [Hint: Consider the sets A = {(x, y) ∈ R2 | |x| > |y|} and
B = {(x, y) ∈ R2 | |x| < |y|}.]

(b) Recall that a group G is residually finite if, for every non-trivial element g of
G, there is a homomorphism f to a finite group such that f(g) 6= 1. Prove that the free
group of rank 2 is residually finite.

2 (a) Prove that the Heisenberg group

H =








1 x z
0 1 y
0 0 1



∣∣∣∣∣∣
x, y, z ∈ Z





can be written as a semi-direct product Z2oA Z for a certain matrix A, which you should
state explicitly. Compute the abelianisation of H.

(b) Let ΓB = Z2 oB Z, where B ∈ GL2(Z). Prove that, if 1 is not an eigenvalue of
B, then the image of the Z2 factor in the abelianisation of ΓB is finite. [Hint: Consider a
commutator tnt−1n−1, where t generates the Z factor and n is contained in the Z2 factor.]

(c) Exhibit a matrix C ∈ GL2(Z) such that the abelianisation of any finite-index
subgroup of ΓC is virtually cyclic. Justify your answer.

3 Throughout this question, H is a subgroup of G.

(a) Consider finite generating sets S for G and T for H, and let dS and dT be the
corresponding word metrics. Prove that

dS(h1, h2) 6 C dT (h1, h2)

for some constant C and all elements h1, h2 ∈ H.

(b) The subgroup H is said to be a retract if there is a homomorphism r : G → H
such that r(h) = h for all h ∈ H. Prove that retracts are quasi-isometrically embedded.

(c) Let
G = 〈a, b | bab−1 = a2〉

and let H = 〈a〉. Prove that H is not quasi-isometrically embedded in G.
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4 (a) Let X be a δ-hyperbolic metric space and let γ : R → X be an isometric
embedding. For any x ∈ X, prove that there is t ∈ R that minimises d(x, γ(t)).

Now suppose that t1, t2 ∈ R both minimise d(x, γ(t)). Prove that |t1 − t2| 6 6δ.

(b) Consider a geodesic triangle in X with vertices x, y and z. Let p be the point
on the side zx with

d(z, p) =
d(x, z) + d(y, z)− d(x, y)

2
.

Similarly, let q be the point on xy with

d(x, q) =
d(y, x) + d(z, x)− d(y, z)

2
,

and let r be the point on yz with

d(y, r) =
d(z, y) + d(x, y)− d(z, x)

2
.

Prove that p, q and r are all at distance at most 4δ from each other.
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