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(a) Let M be an L-structure. Let p(x̄) be a type in L(M) that is finitely satisfiable
in M . Show that p(x̄) is realised in some N such that M 4 N .

(b) Let T be a complete theory with no finite models and a monster model U . For
D ⊆ U and f ∈ Aut(U), define f [D] = {f(d) : d ∈ D} and O(D) = {f [D] : f ∈ Aut(U)} .

Suppose D = φ(U , b̄) for some b̄ ∈ U |b̄|. Show that if O(D) is infinite, then
|O(D)| = |U|.

2 Let Trg be the theory of the random graph in the language Lgph = {R}, where R
is a binary relation symbol. Let U be the monster model of Trg.

(a) Show that every partial embedding p : U → U is elementary.

(b) Hence, or otherwise, show that Trg has quantifier elimination. [You may assume
that a formula φ(x̄) is preserved by all partial embeddings if and only if it is equivalent to
a quantifier-free formula.]

(c) Let A ⊆ U be a small subset of U . Define acl(A) and dcl(A).

(d) Show that, for A as in part (c), acl(A) = dcl(A).

3 Let T be a complete theory with no finite models.

(a) Define what it means for a model N of T to be saturated, universal and
homogeneous.

(b) Show that if N is universal and homogeneous then N is saturated. [You may
assume any characterization of saturation, provided you state it clearly and correctly].

(c) Let N be an uncountable saturated model of T (for example a monster model),
and let the formula φ(x, y) define an equivalence relation E on N . Suppose that every
model M 4 N such that |M | < |N | intersects every equivalence class of E. Show that E
has finitely many equivalence classes.

4 Let T be a strongly minimal theory with monster model U .
(a) Let A and B be independent subsets of U . Show that every bijection f : A→ B

is an elementary map.

(b) Assume that the language of T is countable. Show that every model (that is,
every M � U such that |M | < |U|) is homogeneous. [You may assume standard properties
of algebraic closure].
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