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1 In a survey 1308 individuals were asked the question: within the past 12 months,
how many people they know personally that were victims of racial discrimination? A
researcher was interested in how the answered number of people, given in the survey as
count, is affected by the gender of individuals (1 for male, 0 for female) and if they belong
to an ethnic minority (1 for yes, and 0 for no). The shortened R output of the analysis by
the researcher is shown below.

> model1 <- glm(count ∼ gender + minority,data=racism,family="poisson")

> summary(model1)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2959 0.1161 -19.773 <2e-16 ***

gender -0.1916 0.1473 -1.301 0.193

minority 1.7293 0.1466 11.796 <2e-16 ***

...

Null deviance: 962.8 on 1307 degrees of freedom

Residual deviance: 843.0 on 1305 degrees of freedom

AIC: 1122.3

...

(a) Write down algebraically the model fitted in model1, clearly defining all
quantities. State the log-likelihood function and give the maximum likelihood estimates
from the model output. Give an interpretation of the estimated gender coefficient.

The researcher then performed a statistical test and fitted a second model.

> X2 <- sum(residuals(model1, type="pearson")^2)

> 1-pchisq(X2,1305)

[1] 0

> model2 <- glm(count ∼ gender + minority, data=racism, family="quasipoisson")

> summary(model2)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.2959 0.1522 -15.080 <2e-16 ***

gender -0.1916 0.1931 -0.992 0.321

minority 1.7293 0.1922 8.996 <2e-16 ***

...

(Dispersion parameter for quasipoisson family taken to be 1.719346)

Null deviance: 962.8 on 1307 degrees of freedom

Residual deviance: 843.0 on 1305 degrees of freedom

AIC: NA

...

[QUESTION CONTINUES ON THE NEXT PAGE]
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(b) Explain the statistical test performed by the researcher. State the phenomenon
behind the researcher’s conclusion to fit the second model and state two possible causes
for the phenomenon. Is the researcher’s conclusion justified? Determine the value of X2

from the model outputs.

(c) Which equation is solved by the estimated coefficients in model2? State a formula
for the standard error of the gender coefficient in model2.

(d) Are the standard errors in model2 trustworthy? Explain in detail how the
parametric bootstrap can be used to compute the standard error for gender in model1.

The researcher then fitted a third model to the same data.

> model3 <- glmer(count ∼ gender + (1 | minority),data=racism,family="poisson")

> summary(model3)

...

AIC BIC logLik deviance df.resid

1132.8 1148.3 -563.4 1126.8 1305

...

Random effects:

Groups Name Variance Std.Dev.

minority (Intercept) 0.7356 0.8577

Number of obs: 1308, groups: minority, 2

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4379 0.6141 -2.342 0.0192 *

gender -0.1921 0.1469 -1.308 0.1910

...

(e) Explain why the researcher may have fitted model3. Is this model a good fit for
the data?

(f) State two methods for deciding between model1 and model3 on this data. Can
these methods also be used to decide between model2 and model3?
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2 A company is interested in the number of calls to their customer service. In one
file, they have collected the (logarithm of the) number of calls every 15 minutes between
7am and noon on one day, and analysed these data using the following R commands.

> acf(calls)

> auto.arima(calls, ic="aic")

Series: calls

ARIMA(1,0,1) with zero mean

Coefficients:

ar1 ma1

0.6997 0.9510

s.e. 0.1796 0.3287

sigma^2 = 0.4944: log likelihood = -22.23

AIC=50.46 AICc=51.96 BIC=53.45

This is the output of the acf command.

(a) State the definition of a (weakly) stationary process.

(b) What are the values plotted in the acf(calls)-figure? How is the dashed line
computed? With reference to the plot, explain why the number of calls is unlikely to
follow a white noise process. Suggest a possible ARMA(p, q) model supported by the plot.

(c) Write down algebraically the model fitted by the auto.arima function. What
are the parameter maximum likelihood estimates? Construct a 95% confidence interval for
the ma1 parameter from the model output and explain shortly why this interval is likely
too narrow.

(d) Consider now a white noise process W ∼WN(0, σ2W ), σ2W > 0. Let X = (Xt)t∈Z
be a causal AR(1) process such that for φ ∈ R and another white noise process
ε ∼WN(0, σ2), σ2 > 0,

Xt = φXt−1 + εt.

Let E[εtWt] = 0 for all t ∈ Z and consider the time series Y = (Yt)t∈Z with Yt = Xt +Wt.

(i) What is the possible range of values φ for X to be causal? State the
autocovariance function of X in terms of φ and σ2.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(ii) Show that Y is stationary and find its autocovariance function.

(iii) Show that the autocovariance function of the time series (Ut)t∈Z with
Ut = Yt − φYt−1 vanishes for lags h > 1.

(iv) Conclude by (iii) that Y is an ARMA(1, 1) process. You may use without
a proof the fact that a time series, whose autocorrelations vanish for h > 1, can be
represented as an MA(1) process.
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3 A runners association has collected record times for 35 races in the past year. A
table contains for each race the record time (in minutes), as well as the distance of the race
(in miles) and the cumulative climb (in thousands of feet). A data analyst was interested
in explaining the record times based on the distance and the cumulative climb. The data
analyst first standardised the distance and climb columns to have mean zero and unit
standard deviation, and then fitted three models. A (shortened) version of the R output
is shown below.

> model1 <- lm(time ~ climb + distance, data=races)

> model2 <- glm(log(time) ~ climb + distance, data=races)

> model3 <- glm(time ~ climb + distance, family = Gamma(link=log), data=races)

> summary(model1)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 186.51 7.50 24.867 < 2e-16 ***

climb 42.89 10.04 4.272 0.000162 ***

distance 125.75 10.04 12.525 7.04e-14 ***

...

> summary(model2)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.99902 0.03190 156.699 < 2e-16 ***

climb 0.22514 0.04271 5.272 9.01e-06 ***

distance 0.41135 0.04271 9.632 5.62e-11 ***

...

(Dispersion parameter for gaussian family taken to be 0.035621)

...

> summary(model3)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.01475 0.03046 164.609 < 2e-16 ***

climb 0.22332 0.04078 5.476 4.97e-06 ***

distance 0.40868 0.04078 10.021 2.15e-11 ***

...

> AIC(model2, model3)

df AIC

model2 4 -12.52943

model3 4 336.38099

> plot(model1, which=1, add.smooth=FALSE)

> plot(model2, which=1, add.smooth=FALSE)

[QUESTION CONTINUES ON THE NEXT PAGE]
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The output of the diagnostic plots is as follows:

(a) State algebraically the three fitted models model1, model2 and model3.

(b) Discuss if any of the assumptions for fitting the first two models are violated
according to the diagnostic plots.

(c) Define the AIC criterion for a statistical model, introducing all necessary
notation.

(d) Why would the data analyst conclude from the AIC values in the R output
that model2 fits the data better? Explain why the AIC value for the transformed data in
model2 and the conclusion of the data analyst are not correct. Suggest a corrected AIC
value for model2 from its model output.

(e) Show that when the fitted values are close to the observed values in model3, then
the estimated coefficients in model2 and model3 are close. [Hint: You may use without
proof that a Gamma GLM has variance function V (µ) = µ2, where µ is the mean function,
and weights wi = 1.]

(f) Why should we recommend model3 to the data analyst instead of transforming
the response variables as in model2?
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4 An advertiser wanted to understand how different web design decisions influence
the effectiveness of an online advertisement. They showed the advertisement to all users
visiting the website while varying the font typeface (cagegorical variable font, with two
levels sanserif and serif), display style (variable display, with two levels banner and
popup) and seriousness of writing (writing, numerical variable taking values between 1
and 10). For each user, the advertiser recorded whether the advertisement was clicked.
Here is a snippet of the data.

> head(ad)

click font display writing

1 yes serif banner 3

2 no sanserif banner 8

3 no sanserif banner 1

4 no serif popup 7

5 no serif popup 2

6 no serif popup 9

The advertiser then used the following commands in R:

> x <- model.matrix(∼font*display, data=ad)[, -1]

> y <- model.matrix(∼click-1, data=ad)

> ad.fit1 <- keras_model_sequential() %>%

layer_dense(units = 2, activation = ’relu’, input_shape = dim(x)[2]) %>%

layer_dense(units = 2, activation = ’softmax’) %>%

compile(optimizer=’sgd’, loss=’categorical_crossentropy’) %>%

fit(x, y, batch_size=1, epochs=5)

> ad.fit2 <- keras_model_sequential() %>%

layer_dense(units = 2, activation = ’softmax’, input_shape = dim(x)[2]) %>%

compile(optimizer=’sgd’, loss=’categorical_crossentropy’) %>%

fit(x, y, batch_size=1, epochs=5)

(a) Sketch a diagram of the neural network fitted in ad.fit1. Write down algeb-
raically the neural network model, clearly defining all necessary quantities, associating
sanserif and serif to 0 and 1, banner and popup to 0 and 1, and no and yes to 0 and
1. How many parameters are there in all?

(b) State the fitted neural network classifier and the loss function used in fitting
ad.fit1. Let β̂ be the vector of all estimated coefficients. Show that β̂ is not unique if
no restrictions are imposed on it.

(c) State a logistic classifier giving the same predictions as the classifier fitted in
ad.fit2. Does this solve the corresponding non-uniqueness mentioned in (b)? Justify
your answer. Discuss why the logistic classifier is preferable over ad.fit2.

(d) Assume that all weights in the neural network in ad.fit1 are initialised to be
equal to 1 and that stochastic gradient descent is applied with constant learning rate γ = 1
and without randomly shuffling the data. What are the values of the parameters after one
iteration (i.e., after one batch in the first epoch)?
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5 Suppose we are given Y ∈ Rn and X ∈ Rn×p. An elastic net fits coefficients to this
data set for λ1, λ2 > 0 by

β̂E ∈ argmin
β∈Rp


‖Y −Xβ‖2 + λ1

p∑

j=1

|βj |+ λ2

p∑

j=1

β2j


 .

(a) Discuss how the solutions behave as i) λ1 → 0 or λ1 →∞ for λ2 fixed, ii) λ2 → 0
for λ1 fixed, iii) λ1, λ2 → 0. Is the solution β̂E unique when λ2 > 0?

(b) Describe how coordinate descent can be applied to compute β̂E .

(c) Suppose now that X>X = Ip. Compute a solution β̂E . [Hint: Let β̂E =

(1 + λ2)
−1/2β̂, where β̂ solves a penalised least-squares problem in an extended space

with response Ỹ ∈ Rn+p and `1-penalty only. You may find the function Sλ(u) =
sign(u) max(|u| − λ/2, 0) useful.]

A researcher wanted to understand from a data set how a clinical indicator of
prostate cancer depends on patient characteristics and levels of a number of prostate-
specific antigens. For this purpose, the researcher fitted three different elastic nets (m1
with λ1 = 0 and λ2 = 1, m2 with λ1 = 1 and λ2 = 0, and m3 with λ1 = λ2 = 1/2), and
obtained the following coefficient estimates for β̂E .

> coefficients

m1 m2 m3

lcavol 0.330 0.307 0.336

lweight 0.515 0.000 0.389

age -0.004 0.000 0.000

lbph 0.111 0.000 0.035

svi 0.541 0.000 0.369

lcp 0.015 0.000 0.000

gleason 0.063 0.000 0.000

pgg45 0.004 0.000 0.002

> cor(svi, lcavol)

[1] 0.54

(d) Name the estimators for the coefficients in m1 and m2. Use the table, the
correlation output and your result in (c) to explain how the coefficients estimated in
m3 compare to the estimates in m1 and m2.

(e) State briefly procedures for comparing elastic nets with different λ1 and λ2, and
for obtaining confidence intervals for the non-zero coefficients in m3.
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6 Suppose we are given observations (Xi, Yi)
n
i=1, where Xi ∈ Rp and Yi ∈ {0, 1}. Let

x ∈ Rp be a covariate we want to classify as 0 or 1.

(a) State the regression functions in the context of this classification problem. Define
the Bayes classifier and the Bayes decision boundary.

(b) State the kNN classifier for k > 1 and discuss how the choice of k relates to its
bias, its variance and the smoothness of its decision boundary.

(c) Let (H, 〈·, ·〉H) be an inner product space with induced norm ‖·‖H = 〈·, ·〉1/2H and
let φ : Rp → H be a feature map such that

∑n
i=1 φ(Xi) = 0. Consider the optimisation

problem

û ∈ argmax
u∈H,‖u‖H=1

1

n

n∑

i=1

〈u, φ(Xi)〉2H.

(i) Assuming that φ(x) = x and H = Rp, state an equivalent optimisation
problem solved by PCA and compute the solution û in terms of the data Xi.

(ii) For general φ, you may assume without proof that any solution satisfies
û =

∑n
i=1 α̂iφ(Xi) for α̂ ∈ Rn. With the matrix K = (〈φ(Xi), φ(Xj)〉H)ni,j=1, show that

α̂ ∈ argmax
α∈Rn, α>Kα=1

α>K2α,

and compute the solution α̂ explicitly in terms of K.

(iii) Using (ii), discuss why PCA can be computed efficiently for the transformed
features φ(Xi) and how this can be used to improve the kNN classifier. How is this related
to the kernel trick?

END OF PAPER
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