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Suppose (M, g) is a manifold of dimension n > 2 with metric g, and let V be the
Levi-Civita connection.

a) i) Define the Riemann tensor R%.s. You should justify carefully why any
expression you give defines a tensor.

ii) Show that in a coordinate basis
Ry =057, =017, + 15,0, —=Ts” L7
iii) Establish the Bianchi identities
R%peq) = 0, R%cq.e) = 0,

and the contracted Bianchi identity R%,, — %R;b =0.
[You may assume the existence of normal coordinates about any point p € M.]

b) We say that a metric has isotropic curvature if

Rabed = K(GacGbd — GadJbe)-
Show that K must be a constant, and relate it to the scalar curvature R.

c¢) The geodesic deviation equation is
TV, (TbeYC) — RCyTOTY.
Explain briefly what the vectors T and Y* represent.

d) Suppose now that g is a Lorentzian metric for a four-dimensional spacetime with
isotropic curvature. Suppose an observer falls freely along the timelike curve
A = A(t), where ¢ is proper time along the curve. The observer picks an orthonormal
frame {e,(0)}2_, at A(0) with ep(0) = A(0) and extends this to a local frame
{ea(t)}3_, along \ by parallel propagation.
i) Show that {en(t)}?_, remains orthonormal along .
ii) A second body falls freely along the curve A = A(t), such that in a local
coordinate system {z*} we may write

M) = A(E) + en(D)y™ (1),

where e, (t) = eg(t)%. Suppose that initially °(0) = ¢°(0) = 0, 4*(0) = Y?,

7(0) = Vi, i =1,2,3, where Y% and V* are O(¢). Find y®(t), distinguishing
the cases K < 0, K =0, K > 0, ignoring O(e?) corrections.
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2 Here (M, g) is a Lorentzian manifold.

a) Under a small variation of the metric go,p — gap + dgap, derive formulae for the
change to first order in ) the inverse metric; i7) the volume form

b) Consider the following action for a real scalar field v, where p is a real constant:
1
Slgl = 3 / (9" VarrVop — p20?) dvol
M

i) Show that under an arbitrary variation ¥ — ¢ + v, with 1) vanishing near
OM , §S vanishes if and only if 4 solves the Klein—Gordon equation

Vo V4 — %y = 0.
ii) Find the energy-momentum tensor, 7%, associated to this matter model, and

show directly that V,7% = 0 when 1 satisfies the Klein-Gordon equation.

iii) State Killing’s equation. Show that if K is a Killing vector, then J* = T%, K
satisfies V,J%* = 0, provided that 1 satisfies the Klein—Gordon equation.

c¢) Consider R* with coordinates (¢, x), where x = (2!, 22, #3), equipped with the metric

g = —f*(z)dt* + hyj(x)dz'd?.
Here f > 0 and h;; is positive definite, with inverse hid.
i) Starting from the definition of the Lie derivative, explain why % is a Killing

field for this metric.

ii) Suppose that ¥ solves the Klein—-Gordon equation on this background, and
vanishes for large |x|. By applying the divergence theorem on the region
[71,72] X R3 to the vector field J¢ defined above, or otherwise, show that

B() = [ [0 + 1h90000 + £ ?] Vid's

T

is independent of 7, where h = det h;; and ¥, = {(¢,x) € Rt = 7}
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a) Suppose that a spacetime metric may be written in wave coordinates as a perturb-
ation of the Minkoswki metric:

Guv = Nuv + Eh,u,u; Nuw = diag(_L 17 1; 1)

Writing the energy-momentum tensor as €1}, and expanding to O(e), derive the
linearized Einstein equations in wave gauge

?0,hyy = —161T,,,  O.h", =0,

where EW = hy — %hﬁnuy, and indices are raised and lowered with the Minkowski
metric.
You may assume that in any coordinate basis the Ricci tensor may be written

1
Ry, = _Egupauapgau + F)\TVF)\TO' + ]-_‘)\TVFTO')\ + F)\TUFTV)\
1 1
+ iaal—‘uu” + §auruau - P,u)\'ul—‘u)\a
and that the wave coordinate condition takes the form I',"# = 0.

b) In “almost inertial” coordinates (t,x,y,z) we model a star as a perfect fluid with
p = 0, and mass-energy density p that is independent of ¢, with centre of mass at
the origin. We assume p is small everywhere, and vanishes for 2 = |r|? > RZ,
where r = (z,y,2). The star undergoes slow, rigid, rotation about the z-axis, so
that the fluid four-velocity is given by u* = (1, —Qy, Qz,0) and we neglect terms of
O(£22R?). The energy-momentum tensor is given by TH = pufuV.

i) Show that conservation of the energy-momentum tensor implies that p is
axisymmetric: x0yp — y0,p = 0.

ii) Show that h;; = 0 and

- p(r,) 3./ T / p(r’) / / 3./
h =4 d hoi(r) = 49 ,—x,0)d°r".
00(r) /R5 r — /| o 0i(x) R3 ‘r_r,‘(y =, 0)d

(You need not verify the gauge condition is satisfied).

iii) Ignoring terms of O(mR?/r3), deduce that for r > R
2 2 4
g=— (1 - m> dt* + <1 + m) (da? + dy* + dz*) + @(ydm — zdy)dt
r r r
where m = [ps p(r')d®r’, and you should give an expression for a in terms of
p.
You may assume that the Poisson equation in three dimensions, V¢ = f, has

solution .
]' f(lr ) d37'/

CAm Jgs |r — 7|

o(r) =
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Here (M, g) is a four dimensional Lorentzian spacetime.

A perfect fluid is described by its four-velocity field, u®, satisfying u,u® = —1,
together with the pressure p and mass-energy density p. The associated energy-
momentum tensor is given by

Top = (P + p)uaub + PGab-

Show that conservation of T, implies the first law of thermodynamics and Euler’s
equation:

Uavap + (p + p)vaua = 07 (/0 +p)ubvbua = _(gab + Uaub)vbp‘ (T)

The three-sphere, S3, can be parameterized by the Euler angles (6, ¢,), where
0<f<m0<¢<2m, 0< 1 <4m. Define the following 1-forms

ol = —sindf + cosysinBdp, o = cosdl + sinpsinOdd, o = dip + cos 0dép.

Show that do® = %5ileljk0j A o, where 4,4, k,l run over 1,2,3 with summation
convention assumed, and €;;; = €[;;3) is the usual alternating tensor with €123 = 1.

Let M = R x S3 be parameterised by (¢,6, ¢,), and consider the metric
g=—dt* + (0")* + (%)% + (%), (+)

with the o as in part b) above. Let ¢ = dt and ¢! = o', i = 1,2,3. Find the
connection one-forms and curvature two-forms associated to the orthonormal frame
{e“}izo, and show that in this basis the only non-vanishing components of the
Riemann tensor are

1
Riju = Z(5ik5ﬂ — 0i10k)-

Hence, find the Ricci and Einstein tensor for this spacetime.
You may assume without proof Cartan’s first and second structure equations:

det +wt, Ne” =0, dwt, + e N7, = OF,.

Deduce that the metric (%) satisfies the Einstein equations with a cosmological
constant A:
Gap + Agap = 87Ty

for Ty, of the form (f) where u = %, and p, p are constants which you should
determine in terms of A. Show that your solution has vanishing pressure and positive
mass-energy density for a particular choice of A, which you should state.
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