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During the formation of a galaxy, the gas is slowly accreted into the potential well of
a dark matter halo and is converted into stars. The most massive stars have short lifetimes
and soon explode as supernovae, ejecting most of their mass with high velocity, so that
the gravitational potential suddenly becomes shallower, and the orbits of remaining stars
and dark matter particles expand or may even become unbound. This process, especially
when repeated many times in consecutive starbursts, is believed to be responsible for a
gradual erosion of cuspy density profiles of dark haloes (Pontzen & Governato 2012). In
this question, we consider this process in a very much simplified setup.

Consider a spherical isotropic stellar system with some density profile ρ(r) initially
embedded in a Kepler potential Φ0(r) = −GM0/r. Then the mass generating this potential
is suddenly reduced to M1 = 0.5M0.

(a) Write down expressions relating the orbital energy E, angular momentum L,
semimajor axis a ≡ (r− + r+)/2, and eccentricity e ≡ (r+ − r−)/(r+ + r−), where r−, r+
are the peri- and apocentre radii.

(b) Derive the eccentricity distribution of stars n(e), defined such that n(e) de is the
fraction of stars with eccentricity in the interval (e, e + de). Hint: in the isotropic case,
the distribution of stars in angular momentum at a fixed energy is n(L) ∝ L.

(c) For an orbit with a given semimajor axis a and eccentricity e, determine the
probability that a star will become unbound after the sudden decrease of the potential
(equivalently, the fraction of stars in a phase-mixed population that will become unbound).
In which part of the orbit are the stars more likely to become unbound: close to the
pericentre or to the apocentre?

(d) Determine the overall unbound fraction, after averaging the above expression
over the eccentricity distribution of all stars.

(e) How will the results change if the mass decreases from M0 to M1 very slowly?
Compute the unbound fraction in this case, and determine whether the distribution of
remaining stars will become more radially or tangentially anisotropic, or stay isotropic.

Useful expressions:

η
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An elliptical orbit can be parametrised by the
angle η (called “eccentric anomaly”): it is related to
the radial phase angle θr (“mean anomaly”) by
θr = η − e sin η,
and the distance from the origin is given by
r = a (1− e cos η),
where a is the semimajor axis and e is the eccentricity.

Another possibly useful expression is
∫ b
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In this course, we often considered examples of scale-free density, potential or
distribution function (DF) profiles, but remarked that these are not physically realistic
(have divergent properties at either small or large values of argument). In this question,
we look at a slightly more complicated model that consists of two scale-free components
(An & Evans 2006).

Consider a spherical galaxy model with the following potential profile:

Φ(r) = − GM

b+
(√
b+
√
r
)2 .

(a) Show that the corresponding density profile can be written in the form

ρ(r) =

2∑

k=1

Ak r
−γk [− Φ(r)

]pk ,

determine the power-law indices γk, pk and the coefficients Ak. Derive the asymptotic
behaviour of the density at small and large radii and demonstrate that the model is
physically realistic (its total mass is finite and the circular velocity tends to zero at origin).

(b) Consider a DF for a spherical anisotropic system in the form

f(E,L) = f0 L
−2β |E|n,

where E < 0 is the orbital energy and L is the magnitude of the total angular momentum.
Show that the density profile generated by this DF can be written in the same form

ρ(r) = Ar−γ
[
− Φ(r)]p,

in any potential, determine the corresponding indices and coefficients. By comparing this
expression with the one from (a), demonstrate that the DF of that model can be written
as a sum of two such components.

(c) Determine the asymptotic behaviour of the velocity anisotropy coefficient
β̂ ≡ 1−σ2t /(2σ2r ) at small and large radii for this model, where σr and σt are the radial and
tangential velocity dispersions (the latter is the sum of dispersions in both components of
tangential velocity).

Useful expression:

∫ 1

0
xa (1− x)b dx = B(a+ 1, b+ 1) ≡ Γ(a+ 1) Γ(b+ 1)

Γ(a+ b+ 2)
.
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Consider a satellite galaxy on a circular orbit around the host galaxy, where the
density profiles of both systems are given by ρh,s(r) = Ah,s r

−1, and the normalization
coefficient As for the satellite is much lower than for the host Ah. The satellite faces two
predicaments:

(1) it experiences dynamical friction according to the Chandrasekhar’s formula

dv

dt
= −4πG2Ms ρh ln Λ

v2
K,

where ln Λ is the Coulomb logarithm and K is a numerical coefficient depending on the
ratio between the satellite’s velocity and the velocity dispersion of the host galaxy; both
of these coefficients are assumed to be constant.

(2) it suffers from tidal forces, stripping away the material beyond the tidal radius rt.
For simplicity, we may assume that the density profile of the satellite is sharply truncated
at the tidal radius and is unchanged inside it, hence its total mass Ms is finite.

As the satellite sinks towards the centre of the host galaxy due to dynamical friction,
tidal forces become stronger, the tidal radius shrinks and the satellite mass decreases, thus
reducing the efficiency of friction. In this question, we examine whether the satellite is
destined to be completely disrupted in a finite time as it falls into the centre of the host
galaxy.

(a) Determine the tidal radius rt of the satellite as a function of its orbital radius
ro (assuming a circular orbit) and justify the applicability of the resulting expression.

(b) Write down and solve the differential equation for the time evolution of satellite’s
orbital radius ro and its mass. Hint: the acceleration given by the Chandrasekhar formula
can be converted into the time derivative of the orbital angular momentum, and the latter
expressed in terms of orbital radius (for the given host galaxy potential). We assume that
the satellite stays on a circular orbit.
Does the satellite reach zero radius and mass in a finite time?

(c) How would the decay rate change if the satellite mass stayed constant (i.e.
ignoring the tidal stripping)?

(d) How would the results change if the host galaxy had a singular isothermal density
profile ρ ∝ r−2, but the satellite density still followed the r−1 profile truncated at the tidal
radius? Qualitatively explain the difference from case (b).
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