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1 Consider a two-dimensional electron system described by the Chern-Simons (CS)
Lagrangian density

L =
1

4π~
KIJε

αβγaIα∂βaJγ ,

where KIJ is an n×n symmetric invertible matrix of integers and aIα are CS gauge fields.
Suppose that electrons (i.e., the system’s microscopic constituents) have particle 3-current

Jα =
1

2π~
tIε

αβγ∂βaIγ ,

where t is an n-component vector with tI = 1 for all I; the number N of electrons in an
area Ω is thus N =

∫
Ω d

2xJ0. (In both L and Jα we sum over repeated indices.)

(a) Add source terms to L and use the classical equations of motion (EOMs) for aIα to
show that encircling a quasiparticle of charges qI (under aIα) with one of charges

q′I yields phase exp(2iθq′q) with θq′q = πq ′ ·K−1q, where (q (′))J = q
(′)
J for the n-

component vector q (′). Using the EOMs, also obtain the number N of electrons in a
quasiparticle of charges q. Using these results, show that for K = 1n quasiparticles
with q = eJ , where (eJ)I = δIJ , can be interpreted as electrons. [In obtaining θq′q,
you may use the shortcut of substituting the EOMs back to L.]

The rest of the question focuses on K = 1n + pM with p integer and MIJ = 1 for all
I, J = 1, . . . , n.

(b) Show that, compared with part (a), an additional CS flux −2π~p/(1+np) in all the
n gauge fields is attached to quasiparticles with q = eJ . [In obtaining K−1, you
may want to use that M2 = nM .]

(c) Show that quasiparticles with q = eJ have constituent particle number N =
(1 + np)−1. Obtain the allowed set of charges q an electron can have by requiring
that (i) an electron encircling a quasiparticle with any q ′ yield phase exp(2iθq′q) = 1,
(ii) be a fermion, and (iii) have unit constituent particle number N . Hence show

that p must be even. [You may use that q
(′)
I are integers.]

(d) Suppose that the process Tγ(q) of creating a quasiparticle of charge q together with
its antiparticle, dragging the quasiparticle along a path γ, and then reannihilating
with its antiparticle is a unitary operation taking ground state to ground state.
Working on the torus, use Tγ(q), with suitable q and pairs of paths γ, to show that
θq′q = πq ′ · K−1q implies ground state degeneracy of (at least) | detK| and that
this equals |1 + np|.
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2 This question considers phase-flip and bit-flip codes, the relation of their concat-
enation to the surface code, and the corresponding error-correction thresholds.

(a) Consider the unperturbed one-dimensional Ising model

H = −J
n−1∑

j=1

XjXj+1, J > 0.

By establishing stabilizer generators and logical operators, show that the ground
space is the code space of an n-qubit code to detect phase-flip errors Zj . Denoting
this “phase-flip” code by CZ

n , use the Knill-Laflamme conditions to establish the
maximum number t of phase-flip errors that CZ

n can correct, assuming that at most
t phase flips may occur on any combination of qubits. Explain why CZ

n cannot
correct bit-flip errors Xj .

(b) Suppose that the probability of a phase-flip error on a qubit is p (with 0 6 p < 1/2),
independently for each qubit. Show that maximum likelihood decoding of CZ

n

amounts to a majority vote. Obtain the corresponding error-correction threshold
using the properties of the binomial distribution B(n, p), including its mean np and
standard deviation

√
np(1− p).

(c) The n-qubit bit-flip code CX
n is obtained from CZ

n upon Xj ↔ Zj in all operators.
Consider the concatenation CZ

n ◦ CX
m of CZ

n with CX
m , obtained by replacing the

constituent qubits of CZ
n by the logical qubits of CX

m . Show that CZ
n ◦ CX

m can be
viewed as a surface code on a lattice defined using n spheres joined south-pole-to-
north-pole, such that the spheres’ touching points define the vertices and, for each
sphere, m north-pole-to-south-pole lines of longitudes define the links. Write down
the logical operators, interpret them geometrically, and obtain the code distance.

(d) Consider CZ
n ◦CX

m under the error model in part (b). Show that the error-correction
threshold is the same as in part (b), however, the larger m the slower the logical
error probability decays with n. [You may want to use that ((1 − p) ± p)l =
Pr(even) ± Pr(odd) for the probabilities Pr(even) of an even and Pr(odd) of an
odd number of successes from the binomial distribution B(l, p).]
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3 This question studies aspects of Majorana zero modes.

(a) The Bogoliubov-de Gennes Hamiltonian for a one-dimensional superconductor reads

HBdG =

(
p2

2m − µ ∆p

∆p µ− p2

2m

)
, ∆,m > 0,

with p = −i~∂x. Argue that a system with a superconductor for x < 0 and the
vacuum for x > 0 satisfies sgn(µ) = −sgn(x). Use a long-wavelength approximation,
describing also its domain of validity, to show that such a system hosts a zero-
energy bound state ψ at the superconductor–vacuum interface. Express the
characteristic spatial width of ψ using the parameters of HBdG. Express the operator
γ corresponding to ψ using fermion creation and annihilation operators and show
that γ can be chosen Hermitian.

(b) Define Majorana zero modes (MZMs). Define adiabaticity in the context of MZM
exchange and show, on general grounds, that adiabatically exchanging MZMs γa
and γb implements R±

ab = exp
(
±π

4γaγb
)

up to a phase. Interpret the sign ± in R±
ab.

(c) Consider a system of N+1 MZMs γj (j = 0, . . . , N). Show that Π
(ab)
± = 1

2(1±iγaγb)
is a projector and that it describes a fermion-parity measurement. Suppose that
the system is prepared in the +1 eigenstate of iγNγ0. Show that, for this state,

the sequence Π
(N0)
+ Π

(a0)
sa Π

(b0)
sb of measurements, with Π

(j0)
sj = (1 + isjγjγ0)/2 and

outcome sj = ±1, implements Rsasbab for 0 < a, b < N .

(d) To achieve the desired braid, the measurements of iγjγ0 in part (c) must yield

specified outcomes sj . Focusing on Π
(b0)
sb , show that each of sb = ±1 occurs

with 1/2 probability. Then show that a desired sb can be achieved via “forced
measurements” and briefly describe how the approach can be continued for the

entire Π
(N0)
+ Π

(a0)
sa Π

(b0)
sb sequence.
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