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Introduction

The purpose of this workbook is to present a set of material that would be useful to know before starting
the Tripos. It does not, of course, contain everything you should know. Rather than present a list
of topics, the workbook contains questions on each topic that are supposed to be straightforward; by
tackling these questions, you will see how much knowledge is expected.

Most of you will be familiar with most of the material covered here. It is still worth sketching out a
solution to each question: it will be good revision and anyway you never really know that you have
understood a problem until you do it. The answers are given at the end of the workbook. Note that
none of the questions requires the use of a calculator.

If you find some of the material is unfamiliar, you should look it up. You will find most of it in any
standard A-level (or the equivalent) text; and you may well find a helpful internet source just by googling
the topic.

If a particular area is really unfamiliar to you, it would be worth doing exercises from a text book to
supplement those given here. If you have difficulties with some questions, do not worry; you will have
opportunities to cover the material when you get to Cambridge.

You may also find that you need to get into the swing of mathematics again after your long break
(especially if you took a gap year). The best way to do this is to practice problem-solving. One
source of problems is past STEP papers (available on the Cambridge Assessment STEP web site,
www.admissionstesting.org/for-test-takers/step/about-step/) which will be especially useful if
you did not take STEP. If you have the STEP papers of this summer, you might like to have another go
at them to get back up to speed.

Please e-mail comments or corrections to undergrad-office@maths.cam.ac.uk.
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Algebra

Although computers and even calculators are very good at algebra, all mathematicians agree that it is
important to be able to do routine algebra quickly and accurately. You should be able to state elementary
series expansions including binomial, sine and cosine, and ln series.

1. Factorization

Factorize the following polynomials:

(i) x2 − 3x+ 2 ; (ii) 3x3 − 3x2 − 6x ;

(iii) x2 − x− 1 ; (iv) x3 − 1 ;

(v) x4 − 3x3 − 3x2 + 11x− 6.

Notes: In part (iii) you will need the quadratic formula to find the factors ; part (iv) has one linear
and one quadratic factor (or three linear factors two of which are complex) ; for part (v) you can use the
factor theorem.

2. Inequalities

Find the values of x for which x3 < 2x2 + 3x.

3. Partial fractions

Express the following in partial fractions:

(i)
2

(x+ 1)(x− 1)
; (ii)

1

x3 + 1
;

(iii)
4x+ 1

(x+ 1)2(x− 2)
; (iv)

x2 − 7

(x− 2)(x+ 1)
.

Note: It is best for these purposes not to use the ‘cover-up rule’ ; there are at least two other ways
which involve elementary mathematics, whereas the cover-up rule works for more sophisticated reasons
and to most users is simply a recipe (which does not always work).

4. Completing the square

Find the smallest value (for real x and y) of:

(i) x2 − 2x+ 6 ; (ii) x4 + 2x2 + y4 − 2y2 + 3 ;

(iii) sin2 x+ 4 sinx .

Note: Of course, you could find the smallest value by calculus, but expressing the function as a perfect
square plus a remainder term is a surprisingly useful technique – for example, when integrating a function
with a quadratic denominator.
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5. Exponentials and logarithms

(i) The exponential function ex can be defined by the series expansion

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · .

Use this definition to show that
dex

dx
= ex.

(ii) The natural log function ln t can be defined (for t > 0) as the inverse of the exponential function,

so that ln ex = x. Set t = ex and use the relationship
dx

dt
= 1

/
dt

dx
to show that

d ln t

dt
=

1

t
.

(iii) Assuming that the exponential function has the property eset = es+t, prove that ln(xy) = lnx+ln y.

(iv) The definition of ax for any a is ex ln a. Prove that axay = ax+y and axbx = (ab)x.

Note: If you have not thought of defining ax in this way, it is worth considering how else you could
give it a meaning when x is not an integer.

6. Binomial expansions

(i) Find the coefficient of xk (for 0 ⩽ k ⩽ 10) in the binomial expansion of (2 + 3x)10.

(ii) Use the binomial theorem to find the expansion in powers of x up to x4 of (1+x+x2)6, by writing

it in the form
(
1 + (x+ x2)

)6
.

(iii) Use binomial expansions to find the expansion in powers of x up to x4 of (1− x3)6(1− x)−6.

(iv) Find the first four terms in the binomial expansion of (2 + x)
1
2 .

7. Series expansions of elementary functions

Using only the series expansions sinx = x − x3/3! + x5/5! + · · · , cosx = 1 − x2/2! + x4/4! + · · · ,
ex = 1+ x+ x2/2! + x3/3! + · · · and ln(1 + x) = x− x2/2 + x3/3 + · · · , find the series expansions of the
following functions:

(i) tanx (up to the x5 term) ; (ii) sinx cosx (up to the x5 term) ;

(iii)
ex + e−x

2
(up to the x5 term) ; (iv) ln(ex) (up to the x3 term) ;

(v)
1− cos2 x

x2
(up to the x2 term).

Notes: Do part (ii) without using a trigonometric formula, and compare your answer with the expansion
for sin(2x). The function in part (iii) is coshx, of which more later. The interesting thing about the
function in part (v) is that the series shows it is ‘well-behaved’ in the limit x =→ 0, despite appearances.
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8. Proof by induction

Prove by induction that the following results are valid.

(i) a+ ar + ar2 + · · ·+ arn−1 = a

(
1− rn

1− r

)
.

(ii)

n∑
r=1

r3 =
1

4
n2(n+ 1)2.

Note: Methods of proof will be discussed in some detail in our first term course Numbers and Sets.
Most students will have met mathematical induction at school ; if you haven’t, you will probably want
to try out this straightforward but important method of proof.

9. Arithmetic and geometric progressions

(i) Find the sum of all the odd integers from 11 to 99.

(ii) Evaluate 6 + 3 + 3
2 + 3

4 + · · · .

(iii) Find sin θ + 2 sin3 θ + 4 sin5 θ + · · · . (What ranges of values of θ are allowed?)

(iv) Estimate roughly the approximate number of times a piece of paper has to be torn in half, placing
the results of each tearing in a stack and then doing the next tearing, for the stack of paper to reach the
moon.

Note: The dots in (ii) and (iii) indicate that the series has an infinite number of terms. For part (iii),
recall that the expansion a(1+r+r2+· · · ) only converges if −1 < r < 1. You may find the approximation
103 = 210 useful for part (iv). The distance from the Earth to the Moon is about 4× 105 km.

Trigonometry

It is not necessary to learn all the various trigonometrical formulae; but you should certainly know what
is available. The double-angle formulae, such as tan 2x = 2 tanx/(1 − tan2 x) are worth knowing, as
are the basic formulae for sin(A±B), cos(A±B) and tan(A±B), the Pythagoras-type identities, such
as sec2 x = 1 + tan2 x, and a few special values, such as sinπ/4 = 1/

√
2, that can be deduced from

right-angled triangles with sides (1, 1,
√
2) or (1,

√
3, 2).

10. Basic identities

Starting from the identity sin(A+B) = sinA cosB+cosA sinB, use the basic properties of the trigono-
metric functions (such as sin(−A) = − sinA) to prove the following:

(i) sin(A−B) = sinA cosB − cosA sinB ;

(ii) cos(A+B) = cosA cosB − sinA sinB ;

(iii) tan(A+B) =
tanA+ tanB

1− tanA tanB
;

(iv) sinC + sinD = 2 sin 1
2 (C +D) cos 1

2 (C −D) ;

(v) tan−1 a+ tan−1 b = tan−1

(
a+ b

1− ab

)
+ nπ.

Notes: For part (ii), recall that cosA = sin(π/2 − A). You can use part (iii) to help with part (v).
What exactly does part (v) mean?
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11. Trigonometric equations

(i) Solve the following equations:

(a) sin(x+ π
6 ) + sin(x− π

6 ) =

√
3

2
; (b) cosx+ cos 2x+ cos 3x = 0 .

(ii) Write down the value of cot(π/6) and use a double angle formula to show that cot(π/12) satisfies
the equation c2 − 2

√
3c− 1 = 0. Deduce that cot(π/12) = 2 +

√
3.

12. Trigonometric identities using Pythagoras

Prove the following identities:

(i) tan θ + cot θ = sec θ cosec θ ; (ii) (cot θ + cosec θ)2 =
1 + cos θ

1− cos θ
;

(iii) cos θ =
1− t2

1 + t2
; sin θ =

2t

1 + t2
; tan θ =

2t

1− t2
, where t = tan 1

2θ.

Complex Numbers

A complex number z can be written as x + iy, where x is the real part, y is the imaginary part and
i2 = −1. The modulus of z (written |z| or r) is

√
(x2 + y2) and the argument (written arg z or θ) is

defined by x = r cos θ, y = r sin θ and −π < θ ⩽ π. The complex conjugate of z (written z∗) is x − iy.
The inverse, z−1, of z is the complex number that satisfies z−1z = 1 (for z ̸= 0).

13. Algebra of complex numbers

Use the definitions above with z1 = x1 + iy1 and z2 = x2 + iy2 to show:

(i) z1z2 = (x1x2 − y1y2) + i(x1y2 + y1x2) ; (ii) |z|2 = zz∗ ;

(iii) z−1 =
z∗

|z|2
; (iv) |z1z2| = |z1||z2| ;

(v) arg(z1z2) = arg z1 + arg z2 (assume that 0 < arg z1 ⩽ π/4 and 0 < arg z2 ⩽ π/4).

Give a sketch of the x-y plane (called also the complex plane or the Argand diagram) showing the points
representing the complex numbers z1 = 1 − i, z2 = −

√
3 + i. Verify results (iii), (iv) and (v) for these

numbers.

14. De Moivre’s theorem

De Moivre’s theorem is not in the FP1 syllabus for most examination boards, but it is so important
that you should get to know it if you haven’t already met it.

(i) Show by means of series expansions that

cos θ + i sin θ = eiθ

and deduce that cos θ − i sin θ = e−iθ and that z = reiθ.

Deduce also that cos θ = 1
2 (e

iθ + e−iθ) and sin θ = 1
2i (e

iθ − e−iθ).

(ii) Use the above result to show that reiθ = 1 (for real θ and r > 0) if and only if r = 1 and θ = 2nπ
for some integer n.

(iii) Use part (ii) to find the three distinct roots of the equation z3 = 1. Draw them on the complex
plane and convert them from modulus-argument form to real-imaginary form.
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15. Geometry of the complex plane

(i) Show by transforming to Cartesian coordinates that the equation |z − c| = r, where c is a complex

number, describes a circle or a point.

(ii) Show that the equation arg z = α, where α is a constant, describes a line segment.

(iii) Show by means of a diagram that |z1 + z2| ⩽ |z1|+ |z2| for any two complex numbers. Deduce that
|z1 − z3| ⩽ |z1|+ |z3| and |z4 − z2| ⩾ |z4| − |z2| for any complex numbers z1, z2, z3 and z4. Under what
circumstances does the equation |z1 + z2| = |z1|+ |z2| hold?

Hyperbolic Functions

Prior knowledge of hyperbolic functions is not assumed for our mathematics course, but it is worth
getting to know the definitions and basic properties, which are given below. Hyperbolic functions are
very similar to trigonometric functions, and many of their properties are direct analogues of the properties
of trigonometric functions. The definitions are

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

ex − e−x

ex + e−x

and cosechx = (sinhx)−1, sechx = (coshx)−1, cothx = (tanhx)−1.

16. Basic properties

Give a rough sketch of the graphs of the six hyperbolic functions. Show from the above definitions that

(i) cosh2 x− sinh2 x = 1 ;

(ii)
d(sinhx)

dx
= coshx ;

d(coshx)

dx
= sinhx ;

(iii) cosh(x+ y) = coshx cosh y + sinhx sinh y ;

(iv) cosh(ix) = cosx, sinh(ix) = i sinx, cos(ix) = cosh(x), sin(ix) = i sinhx.

Notes: You can use (iv) to prove (i) and (iii) using the corresponding trigonometric identities. In
fact, (iv) is behind the rule which says that any formula involving trigonometric functions becomes the
corresponding formula involving hyperbolic functions if you change the sign of every product of two odd
functions (such as sinx or tanx).

17. Further properties

Use the definitions, and the results of the previous question, to show that

(i) sech 2x = 1− tanh2 x (ii)
d(tanhx)

dx
= sech 2x

(iii)
d2(sinhx)

dx2
= sinhx (iv) sinh−1 x = ln

(
x+

√
(x2 + 1)

)
.

Note: For part (iv), note that sinh−1 x is the inverse function, not the reciprocal.

Conic Sections

You should be familiar with basic coordinate geometry (lines, circles, tangents and normals to curves,
etc). Conic sections (parabola, ellipse and hyperbola) are introduced in the first term course Vectors and
Matrices, but you would find it very useful to do a little preliminary work on coordinate and parametric
equations for conic sections if you have not seen them before. They are not only important in pure
mathematics: they also arise, for example, as celestial orbits in the second term Dynamics course.
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18. Basic definitions

(i) Parabola. The point (x, y) has the property that its distance from the point (a, 0) is equal to its

distance from the line x = −a. Sketch the locus of the point using this information. Show that y2 = 4ax.

(ii) Ellipse and hyperbola. The point (x, y) has the property that its distance from the point (ae, 0) is
e times its distance from the line x = ae−1. Sketch the locus of the point for 0 < e < 1 and for e > 1.
Show that x2/a2 + y2/b2 = 1 if 0 < e < 1 and that x2/a2 − y2/b2 = 1 if e > 1, where b = a

√
|1− e2|.

(iii) Rectangular hyperbola. Show that the hyperbola x2/a2 − y2/b2 = 1 becomes the rectangular
hyperbola XY = 1 in the new coordinates given by x = a(X + Y )/2, y = b(X − Y )/2.

19. Parametric equations

Show that the curves with parametric form (x, y) = (at2, 2at), (a cos θ, b sin θ) and (a cosh θ, b sinh θ) are
conic sections.

20. Polar coordinates

By converting to cartesian coordinates, show that:

(i) r cos(θ − α) = c describes a straight line ;

(ii) r = ℓ cos θ describes a circle ;

(iii) r2 cos(θ + α) cos(θ − α) = c2 describes a hyperbola ;

(iv) r−1 = k cos θ +m can describe any conic section, the type depending on the values of k and m.

Notes: Here, c, k, ℓ, m and α are constants. Special cases, such as α = 0 in part (iii), can be ignored.
In each case, you should give a careful description (x and y intercepts, e, etc) of the curves.

Matrices and Vectors

Matrices and vectors arise in all branches of mathematics and form an indispensable part of a mathe-
matician’s toolkit. You will have met them in FP1 (or the equivalent if you did not take A-levels) and
should be familiar with the basic properties. It is also worth understanding the basic geometric uses of
vectors.

We consider here only 2× 2 matrices

21. Matrix multiplication

Let A =

(
1 2
1 3

)
, B =

(
1 0
−1 1

)
, C =

(
2 1
1 2

)
and I =

(
1 0
0 1

)
.

(i) Show that AB ̸= BA. (This shows that matrix multiplication is not commutative.)

(ii) Show that (AB)C = A(BC). (This illustrates that matrix multiplication is associative).

(iii) Without using any formulae, find a matrix D =

(
a b
c d

)
such that AD = I.

(iv) Show that (AB)T = BTAT.

(v) Show that detAB = detAdetB.

Notes: The symbol T denotes the transpose of the matrix, i.e. the matrix obtained by exchanging rows

and columns:

(
a b
c d

)T

=

(
a c
b d

)
. The determinant of

(
a b
c d

)
is ad− bc.
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22. Position vectors

Show that the points with position vectors1
0
1

 ,

2
1
0

 ,

 4
3
−2

 ,

lie on a straight line and give the equation of the line in the two forms

(i) r = a+ λb , (ii)
x− x0

c
=

y − y0
d

=
z − z0

e
.

23. Scalar products

The three vectors A, B and C are defined by

A = (1, 3, 4), B = (2, 1, 3), C = (3, 3, 2).

(i) Order the vectors by magnitude.

(ii) Use the scalar product to find the angles between the pairs of vectors (a) A and B, (b) B and C,
leaving your answer in the form of an inverse cosine.

(iii) Find the lengths of the projections of the vectors (a) A onto B, (b) B onto A.

(iv) Find an equation of the plane, in the form r = a+λb+µc, through the points with position vectors
A, B and C. Show that the normal to this plane is (1, 0, 1) and find an equation of the plane in the
form r.n = p, where n is a unit vector.

Note: The projection of A onto B is the component of A in the direction of the vector B.

Differentiation

Differentiation of standard functions, products, quotients, implicit function expressions, and functions of
a function (using the chain rule) should be routine.

24. Direct differentiation

Differentiate y(x) with respect to x in the following cases:

(i) y = ln
(
x+

√
(1 + x2)

)
; (ii) y = ax ;

(iii) y = xx ; (iv) y = sin−1 x√
1 + x2

.

Notes: Simplify your answer to part (i). For (ii), see the definition in question 5(iv). Can you see why
the answer to (iv) is surprisingly simple?

25. Parametric differentiation

Show that if x = a cos θ, y = b sin θ then
d2y

dx2
< 0 for y > 0.

26. Stationary points

Find the stationary points of the function

f(x) =
x

x2 + a2
,

where a > 0, classifying them as either maximum or minimum. Sketch the curve (without using a
calculator).
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Integration

You need to be able to recognise standard integrals (without having to leaf through a formula book) and
evaluate them (referring to your formula book, if necessary). You need to be familiar with the techniques
of integration by parts and by substitution.

27. Indefinite integrals

Calculate the following integrals:

(i)

∫
ax dx ; (ii)

∫
1

x2 − 2x+ 6
dx ;

(iii)

∫
eax cos(bx) dx ; (iv)

∫
eaxeibx dx ;

(v)

∫
1

1− x3
dx ; (vi)

∫
cosecxdx ;

(vii)

∫
secxdx ; (viii)

∫
1√

(c2 +m2y2)
dy ;

(ix)

∫
tan−1 xdx ; (x)

∫
x3ex

2

dx .

Notes: For part (i), see question 5(iv). For part (ii), see question 4(i). Note that you can obtain
(iii) from (iv) by taking the real part. Use partial fractions for part (v). For (vi) and (vii), use the
substitution t = tan(x/2) rather than the trick of multiplying top and bottom by e.g. secx + tanx.
Try also deriving (vii) from (vi) by means of the substitution y = π/2 − x. For (viii), either substitute
my = c sinh θ or, if you are not keen on hyperbolic functions, see question 24(i). Use integration by parts
for (ix) and (x).

Differential Equations

There is a course on differential equations in the first term for which very little knowledge is assumed.

28. First-order equations

Find the general solution (i.e. with a constant of integration) of the following equations.

(i) y
dy

dx
= x ; (ii)

dy

dx
= my ;

(iii) x
dy

dx
= y + 1 ; (iv)

dy

dx
− y tanx = 1 ;

(v)
dy

dx
=

√
c2 − k2y2 ; (vi) z

dz

dy
+ k2y = 0.

Note: For part (iv), find a function (‘integrating factor’) w(x) such that the equation can be written
d(wy)

dx
= w.
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29. Second-order equations

(i) Show, by substituting y = emx into the equation, that there are two values of m for which emx

satisfies

a
d2y

dx2
+ b

dy

dx
+ cy = 0, (∗)

where a, b and c are constants.

(ii) Show (by substitution) that if both y1 and y2 satisfy the equation (∗), then so also does the function
y defined by y = Ay1 +By2, where A and B are constants.

(iii) Find the two values of m for which emx satisfies the equation

d2y

dx2
+ 3

dy

dx
+ 2y = 0

and write down a solution that contains two arbitrary constants.

You have just solved the above equation (y′′+3y′+2y = 0) by guessing solutions. Instead, let z = y′+2y.
Then show that z′ + z = 0, solve for z and then solve the resulting first-order differential equation of y,
thereby proving that the solution you found above is in fact the most general solution.

(iv) Show by substitution that epx sin qx satisfies the equation

d2y

dx2
− 2p

dy

dx
+ (p2 + q2)y = 0.

Find the general solution by the method outlined in the second paragraph of (iii) above.

30. Simple harmonic motion

(i) Show that the equation

d2y

dx2
+ k2y = 0 (y real)

can be written as z
dz

dy
+ k2y = 0, where z =

dy

dx
. Show that z = ±

√
(c2 − k2y2), where c is a constant

of integration, (compare questions 28(v) and 28(vi)) and hence show that

y = R sin k(x− x0),

where R and x0 are constants. (R = c/k and x0 is a new constant of integration.)

(ii) Repeat the steps of part (i) on the equation

d2y

dx2
− k2y = 0

to obtain
y = R sinh k(x− x0).

In this case, is it the general solution?
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Answers

1. (i) (x− 2)(x− 1) (ii) 3x(x− 2)(x+ 1)

(iii) (x− 1
2 (1−

√
5))(x− 1

2 (1 +
√
5)) (iv) (x− 1)(x2 + x+ 1)

(v) (x− 3)(x− 1)2(x+ 2).

2. x < −1 or 0 < x < 3.

3. (i)
1

x− 1
− 1

x+ 1
(ii)

1

3

(
1

x+ 1
− x− 2

x2 − x+ 1

)
(iii)

1

(x+ 1)2
− 1

x+ 1
+

1

x− 2
(iv) 1− 1

x− 2
+

2

x+ 1
.

4. (i) 5; (ii) 2; (iii) −3 (smallest when sinx = −1).

6. (i)
3k210−k10!

k!(10− k)!
(ii) 1 + 6x+ 21x2 + 50x3 + 90x4

(iii) Same as (ii) (iv)
√
2
(
1 + 1

4x− 1
32x

2 + 1
128x

3
)
.

7. (i) x+ 1
3x

3 + 2
15x

5 (ii) x− 2
3x

3 + 2
15x

5

(iii) 1 + 1
2x

2 + 1
24x

4 (iv) x

(v) 1− 1
3x

2.

9. (i) 2475 (ii) 12

(iii)
sin θ

cos 2θ
(−π/4 + nπ < θ < π/4 + nπ) (iv) about 42 times.

11. (ia) nπ + (−1)nπ/6 (ib) nπ/2 + π/4, 2nπ ± 2π/3.

13. |z1| =
√
2, arg z1 = −π/4, |z2| = 2, arg z2 = 5π/6.

14. (iii) 1, e2iπ/3, e−2iπ/3 or 1, (−1± i
√
3)/2.

21. (iii)

(
3 −2
−1 1

)
.

22. (i) r =

1
0
1

+ λ

 1
1
−1

 (ii) x− 1 = y = 1− z

23. (i) |A| > |C| > |B|; (ii) cos−1 17/(2
√
91), cos−1 15/(2

√
77), (iii) 17/

√
14, 17/

√
26

(iv) r =

1
3
4

+ λ

 1
−2
−1

+ µ

 2
0
−2

, r.

1/
√
2

0
1/
√
2

 = 5/
√
2.

24. (i)
1√

x2 + 1
(ii) ax ln a

(iii) xx(1 + lnx) (iv)
1

1 + x2
(sin−1 x√

x2 + 1
= tan−1 x).
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26. Maximum at

(
a,

1

2a

)
, minimum at

(
−a,− 1

2a

)
.

27. (i)
1

ln a
ax + C (ii)

1√
5
tan−1 x− 1√

5
+ C

(iii)
1

a2 + b2
(a cos bx+ b sin bx)eax + C (iv)

1

a+ ib
e(a+ib)x + C

(v)
1

6
ln

x2 + x+ 1

(x− 1)2
+

1√
3
tan−1

(
2x+ 1√

3

)
+ C

(vi) ln tan(x/2) + C (vii) ln

(
1 + tan(x/2)

1− tan(x/2)

)
+ C

(viii) m−1 ln
(
(my +

√
m2y2 + c2)/c

)
+ C or m−1 sinh−1(my/c) + C

(ix) x tan−1 x− 1
2 ln(1 + x2) + C (x) 1

2 (x
2 − 1)ex

2

+ C

28. (i) y2 = x2 + C (ii) y = Cemx

(iii) y = Cx− 1 (iv) y = C secx+ tanx

(v) ky = c sin k(x− x0) (vi) z2 + k2y2 = C

29. (i) Solution of am2 + bm+ c = 0 (iii) m = −1 and m = −2; y = Ae−x +Be−2x

(iv) Set z = y′ − (p+ iq)y.
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