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SECTION I

1H Number Theory

Let x be a real number greater than or equal to 2, and define

P (x) =
∏
p6x

(
1− 1

p

)
,

where the product is taken over all primes p which are less than or equal to x. Prove that

P (x) → 0 as x → ∞, and deduce that
∑

p

1
p

diverges when the summation is taken over

all primes p.

2G Topics in Analysis

(a) State the Baire category theorem, in its closed-sets version.

(b) For every n ∈ N let fn be a continuous function from R to R, and let g(x) = 1
when x is rational and 0 otherwise. For each N ∈ N, let

FN =
{
x ∈ R : ∀n > N fn(x) 6 1

3 or fn(x) > 2
3

}
.

By applying the Baire category theorem, prove that the functions fn cannot
converge pointwise to g. (That is, it is not the case that fn(x) → g(x) for every
x ∈ R.)

3F Geometry and Groups

What is a crystallographic group in the Euclidean plane? Prove that, if G is
crystallographic and g is a nontrivial rotation in G, then g has order 2, 3, 4, or 6.

4G Coding and Cryptography

A binary erasure channel with erasure probability p is a discrete memoryless channel
with channel matrix (

1− p p 0
0 p 1− p

)
.

State Shannon’s second coding theorem, and use it to compute the capacity of this channel.
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5I Statistical Modelling

The table below summarises the yearly numbers of named storms in the Atlantic
basin over the period 1944–2004, and also gives an index of average July ocean temperature
in the northern hemisphere over the same period. To save space, only the data for the
first four and last four years are shown.

Year Storms Temp

1944 11 0.165

1945 11 0.080

1946 6 0.000

1947 9 -0.024

...
...

...

2001 15 0.592

2002 12 0.627

2003 16 0.608

2004 15 0.546

Explain and interpret the R commands and (slightly abbreviated) output below.

> Mod <- glm(Storms~Temp,family=poisson)

> summary(Mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.26061 0.04841 46.697 < 2e-16 ***

Temp 0.48870 0.16973 2.879 0.00399 **

Residual deviance: 51.499 on 59 degrees of freedom

In 2005, the ocean temperature index was 0.743. Explain how you would predict
the number of named storms for that year.
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6B Mathematical Biology

A nonlinear model of insect dispersal with exponential death rate takes the form
(for insect population n(x, t))

∂n

∂t
= −µn+

∂

∂x

(
n
∂n

∂x

)
. (∗)

At time t = 0 the total insect population is Q, and all the insects are at the origin. A
solution is sought in the form

n =
e−µt

λ(t)
f(η); η =

x

λ(t)
, λ(0) = 0 . (†)

(a) Verify that
∫∞
−∞ f dη = Q, provided f decays sufficiently rapidly as |x| → ∞.

(b) Show, by substituting the form of n given in equation (†) into equation (∗), that
(∗) is satisfied, for nonzero f , when

dλ

dt
= λ−2e−µt and

df

dη
= −η .

Hence find the complete solution and show that the insect population is always
confined to a finite region that never exceeds the range

|x| 6
(

9Q
2µ

)1/3

.

7E Dynamical Systems

Consider the logistic map F (x) = µx(1 − x) for 0 6 x 6 1, 0 6 µ 6 4. Show that
there is a period-doubling bifurcation of the nontrivial fixed point at µ = 3. Show further
that the bifurcating 2-cycle (x1, x2) is given by the roots of

µ2x2 − µ(µ+ 1)x+ µ+ 1 = 0 .

Show that there is a second period-doubling bifurcation at µ = 1 +
√

6.
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8E Further Complex Methods

By means of the change of variable u = rs, v = r(1−s) in a suitable double integral,
or otherwise, show that for Re z > 0[

Γ
(

1
2z

)]2 = B
(

1
2z,

1
2z

)
Γ(z) .

Deduce that, if Γ(z) = 0 for some z with Re z > 0, then Γ
(
z/2m

)
= 0 for any positive

integer m.

Prove that Γ(z) 6= 0 for any z.

9C Classical Dynamics

Calculate the principal moments of inertia for a uniform cylinder, of mass M ,
radius R and height 2h, about its centre of mass. For what height-to-radius ratio does the
cylinder spin like a sphere?

10D Cosmology

The number density of fermions of mass m at equilibrium in the early universe with
temperature T , is given by the integral

n =
4π
h3

∫ ∞

0

p2 dp

exp[(E(p)− µ)/kT ] + 1

where E(p) = c
√
p2 +m2c2, and µ is the chemical potential. Assuming that the fermions

remain in equilibrium when they become non-relativistic (kT, µ � mc2), show that the
number density can be expressed as

n =
(

2πmkT
h2

)3/2

exp
[
(µ−mc2)/kT

]
.

[Hint: You may assume
∫∞
0
dx e−σ2x2

=
√
π/(2σ) , (σ > 0).]

Suppose that the fermions decouple at a temperature given by kT = mc2/α where
α � 1. Assume also that µ = 0. By comparing with the photon number density at
nγ = 16πζ(3)(kT/hc)3, where ζ(3) =

∑∞
n=1 n

−3 = 1.202 . . ., show that the ratio of number
densities at decoupling is given by

n

nγ
=

√
2π

8ζ(3)
α3/2 e−α .

Now assume that α ≈ 20, (which implies n/nγ ≈ 5 × 10−8), and that the fermion
mass m = mp/20, where mp is the proton mass. Explain clearly why this new fermion
would be a good candidate for solving the dark matter problem of the standard cosmology.

Paper 4 [TURN OVER



6

SECTION II

11H Number Theory

Define the notion of a Fermat, Euler, and strong pseudo-prime to the base b, where
b is an integer greater than 1.

Let N be an odd integer greater than 1. Prove that:

(a) If N is a prime number, then N is a strong pseudo-prime for every base b with
(b,N) = 1.

(b) If there exists a base b1 with 1 < b1 < N and (b1, N) = 1 for which N is not a
pseudo-prime, then in fact N is not a pseudo-prime for at least half of all bases b
with 1 < b < N and (b,N) = 1.

Prove that 341 is a Fermat pseudo-prime, but not an Euler pseudo-prime, to the
base 2.

12F Geometry and Groups

Let G be a discrete subgroup of PSL2(C). Show that G is countable. Let
G = {g1, g2, . . .} be some enumeration of the elements of G. Show that for any point
p in hyperbolic 3-space H3, the distance dhyp(p, gn(p)) tends to infinity. Deduce that a
subgroup G of PSL2(C) is discrete if and only if it acts properly discontinuously on H3.

13I Statistical Modelling

Consider a linear model for Y = (Y1, . . . , Yn)T given by

Y = Xβ + ε,

where X is a known n × p matrix of full rank p < n, where β is an unknown vector and
ε ∼ Nn(0, σ2I). Derive an expression for the maximum likelihood estimator β̂ of β, and
write down its distribution.

Find also the maximum likelihood estimator σ̂2 of σ2, and derive its distribution.

[You may use Cochran’s theorem, provided that it is stated carefully. You may also assume
that the matrix P = X(XTX)−1XT has rank p, and that I − P has rank n− p.]

Paper 4
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14E Further Complex Methods

Let I =
∫ 1

0

[
x(1− x2)

]1/3
dx .

(a) Express I in terms of an integral of the form
∮

(z3 − z)1/3 dz, where the path of

integration is a large circle. You should explain carefully which branch of (z3−z)1/3

you choose, by using polar co-ordinates with respect to the branch points. Hence
show that I = 1

6π cosec 1
3π.

(b) Give an alternative method of evaluating I, by making a suitable change of variable
and expressing I in terms of a beta function.
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15D Cosmology

The perturbed motion of cold dark matter particles (pressure-free, P = 0) in an
expanding universe can be parametrized by the trajectories

r(q, t) = a(t) [q +ψ(q, t)] ,

where a(t) is the scale factor of the universe, q is the unperturbed comoving trajectory
and ψ is the comoving displacement. The particle equation of motion is r̈ = −∇Φ, where
the Newtonian potential satisfies the Poisson equation ∇2Φ = 4πGρ with mass density
ρ(r, t).

(a) Discuss how matter conservation in a small volume d3r ensures that the perturbed
density ρ(r, t) and the unperturbed background density ρ̄(t) are related by

ρ(r, t)d3r = ρ̄(t)a3(t)d3q .

By changing co-ordinates with the Jacobian

|∂ri/∂qj |−1 = |aδij + a ∂ψi/∂qj |−1 ≈ a−3(1−∇q ·ψ) ,

show that the fractional density perturbation δ(q, t) can be written to leading order
as

δ ≡ ρ− ρ̄

ρ̄
= −∇q ·ψ ,

where ∇q ·ψ =
∑

i ∂ψi/∂qi.

Use this result to integrate the Poisson equation once. Hence, express the particle
equation of motion in terms of the comoving displacement as

ψ̈+ 2
ȧ

a
ψ̇− 4πGρ̄ψ = 0 .

Infer that the density perturbation evolution equation is

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ = 0 . (∗)

[Hint: You may assume that the integral of ∇2Φ = 4πGρ̄ is ∇Φ = −4πGρ̄r/3.
Note also that the Raychaudhuri equation (for P = 0) is ä/a = −4πGρ̄/3.]

(b) Find the general solution of equation (∗) in a flat (k = 0) universe dominated
by cold dark matter (P = 0). Discuss the effect of late-time Λ or dark energy
domination on the growth of density perturbations.
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9

16H Logic and Set Theory

Explain carefully what is meant by a well-founded relation on a set. State the
recursion theorem, and use it to prove that a binary relation r on a set a is well-founded if
and only if there exists a function f from a to some ordinal α such that (x, y) ∈ r implies
f(x) < f(y).

Deduce, using the axiom of choice, that any well-founded relation on a set may be
extended to a well-ordering.

17F Graph Theory

What is meant by a graph G of order n being strongly regular with parameters
(d, a, b)? Show that, if such a graph G exists and b > 0, then

1
2

{
n− 1 +

(n− 1)(b− a)− 2d√
(a− b)2 + 4(d− b)

}

is an integer.

Let G be a graph containing no triangles, in which every pair of non-adjacent
vertices has exactly three common neighbours. Show that G must be d-regular and
|G| = 1 + d(d+ 2)/3 for some d ∈ {1, 3, 21}. Show that such a graph exists for d = 3.

18H Galois Theory

Let K be a field of characteristic different from 2.

Show that if L/K is an extension of degree 2, then L = K(x) for some x ∈ L such
that x2 = a ∈ K. Show also that if L′ = K(y) with 0 6= y2 = b ∈ K then L and L′ are
isomorphic (as extensions of K) if and only b/a is a square in K.

Now suppose that F = K(x1, . . . , xn) where 0 6= x2
i = ai ∈ K. Show that F/K

is a Galois extension, with Galois group isomorphic to (Z/2Z)m for some m 6 n. By
considering the subgroups of Gal(F/K), show that if K ⊂ L ⊂ F and [L : K] = 2, then
L = K(y) where y =

∏
i∈I

xi for some subset I ⊂ {1, . . . , n}.
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19F Representation Theory

In this question, all vector spaces will be complex.

(a) Let A be a finite abelian group.

(i) Show directly from the definitions that any irreducible representation must
be one-dimensional.

(ii) Show that A has a faithful one-dimensional representation if and only if A
is cyclic.

(b) Now let G be an arbitrary finite group and suppose that the centre of G is non-
trivial. Write Z = {z ∈ G | zg = gz ∀g ∈ G} for this centre.

(i) Let W be an irreducible representation of G. Show that ResG
ZW = dimW.χ,

where χ is an irreducible representation of Z.

(ii) Show that every irreducible representation of Z occurs in this way.

(iii) Suppose that Z is not a cyclic group. Show that there does not exist an
irreducible representation W of G such that every irreducible representation
V occurs as a summand of W⊗n for some n.

20G Number Fields

Let ζ = e2πi/5 and let K = Q(ζ). Show that the discriminant of K is 125. Hence
prove that the ideals in K are all principal.

Verify that (1 − ζn)/(1 − ζ) is a unit in K for each integer n with 1 6 n 6 4.
Deduce that 5/(1 − ζ)4 is a unit in K. Hence show that the ideal [1 − ζ] is prime and
totally ramified in K. Indicate briefly why there are no other ramified prime ideals in K.

[It can be assumed that ζ, ζ2, ζ3, ζ4 is an integral basis for K and that the Minkowski
constant for K is 3/(2π2).]

21H Algebraic Topology

Fix a point p in the torus S1×S1. Let G be the group of homeomorphisms f from
the torus S1 × S1 to itself such that f(p) = p. Determine a non-trivial homomorphism φ
from G to the group GL(2,Z).
[The group GL(2,Z) consists of 2×2 matrices with integer coefficients that have an inverse
which also has integer coefficients.]

Establish whether each f in the kernel of φ is homotopic to the identity map.
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22G Linear Analysis

Let H be a complex Hilbert space. Define what it means for a linear operator
T : H → H to be self-adjoint. State a version of the spectral theorem for compact self-
adjoint operators on a Hilbert space. Give an example of a Hilbert space H and a compact
self-adjoint operator on H with infinite dimensional range. Define the notions spectrum,
point spectrum, and resolvent set, and describe these in the case of the operator you wrote
down. Justify your answers.

23F Riemann Surfaces

Define what is meant by a divisor on a compact Riemann surface, the degree of a
divisor, and a linear equivalence between divisors. For a divisor D, define `(D) and show
that if a divisor D′ is linearly equivalent to D then `(D) = `(D′). Determine, without
using the Riemann–Roch theorem, the value `(P ) in the case when P is a point on the
Riemann sphere S2.

[You may use without proof any results about holomorphic maps on S2 provided that these
are accurately stated.]

State the Riemann–Roch theorem for a compact connected Riemann surface C.
(You are not required to give a definition of a canonical divisor.) Show, by considering
an appropriate divisor, that if C has genus g then C admits a non-constant meromorphic
function (that is a holomorphic map C → S2) of degree at most g + 1.

24H Differential Geometry

(a) Let S ⊂ R3 be an oriented surface and let λ be a real number. Given a point p ∈ S
and a vector v ∈ TpS with unit norm, show that there exist ε > 0 and a unique curve
γ : (−ε, ε) → S parametrized by arc-length and with constant geodesic curvature
λ such that γ(0) = p and γ̇(0) = v.

[You may use the theorem on existence and uniqueness of solutions of ordinary
differential equations.]

(b) Let S be an oriented surface with positive Gaussian curvature and diffeomorphic
to S2. Show that two simple closed geodesics in S must intersect. Is it true that
two smooth simple closed curves in S with constant geodesic curvature λ 6= 0 must
intersect?
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25J Probability and Measure

Let (Ω,A, µ) be a measure space and f : Ω → R a measurable function.

(a) Explain what is meant by saying that f is integrable, and how the integral
∫
Ω
f dµ

is defined, starting with integrals of A-simple functions.

[Your answer should consist of clear definitions, including the ones for A-simple
functions and their integrals.]

(b) For f : Ω → [0,∞) give a specific sequence (gn)n∈N of A-simple functions such that
0 6 gn 6 f and gn(x) → f(x) for all x ∈ Ω. Justify your answer.

(c) Suppose that that µ(Ω) < ∞ and let f1, f2, . . . : Ω → R be measurable functions
such that fn(x) → 0 for all x ∈ Ω. Prove that, if

lim
c→∞

sup
n∈N

∫
|fn|>c

|fn| dµ = 0,

then
∫
Ω
fn dµ→ 0.

Give an example with µ(Ω) < ∞ such that fn(x) → 0 for all x ∈ Ω, but∫
Ω
fn dµ 6→ 0, and justify your answer.

(d) State and prove Fatou’s Lemma for a sequence of non-negative measurable func-
tions.

[Standard results on measurability and integration may be used without proof.]

Paper 4
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26J Applied Probability

(a) Let (Nt)t>0 be a Poisson process of rate λ > 0. Let p be a number between 0 and
1 and suppose that each jump in (Nt) is counted as type one with probability
p and type two with probability 1 − p, independently for different jumps and
independently of the Poisson process. Let M (1)

t be the number of type-one jumps
and M (2)

t = Nt−M (1)
t the number of type-two jumps by time t. What can you say

about the pair of processes (M (1)
t )t>0 and (M (2)

t )t>0? What if we fix probabilities
p1, ..., pm with p1 + ...+ pm = 1 and consider m types instead of two?

(b) A person collects coupons one at a time, at jump times of a Poisson process (Nt)t>0

of rate λ. There are m types of coupons, and each time a coupon of type j is
obtained with probability pj , independently of the previously collected coupons
and independently of the Poisson process. Let T be the first time when a complete
set of coupon types is collected. Show that

P(T < t) =
m∏

j=1

(1− e−pjλt) .

Let L = NT be the total number of coupons collected by the time the complete set
of coupon types is obtained. Show that λET = EL. Hence, or otherwise, deduce
that EL does not depend on λ.
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27J Principles of Statistics

(a) State the strong law of large numbers. State the central limit theorem.

(b) Assuming whatever regularity conditions you require, show that if
θ̂n ≡ θ̂n(X1, . . . , Xn) is the maximum-likelihood estimator of the unknown param-
eter θ based on an independent identically distributed sample of size n, then under
Pθ √

n(θ̂n − θ) → N(0, J(θ)−1) in distribution

as n→∞, where J(θ) is a matrix which you should identify. A rigorous derivation
is not required.

(c) Suppose that X1, X2, . . . are independent binomial Bin(1, θ) random variables. It
is required to test H0 : θ = 1

2 against the alternative H1 : θ ∈ (0, 1). Show that the
construction of a likelihood-ratio test leads us to the statistic

Tn = 2n{θ̂n log θ̂n + (1− θ̂n) log(1− θ̂n) + log 2},

where θ̂n ≡ n−1
∑n

k=1Xk. Stating clearly any result to which you appeal, for large
n, what approximately is the distribution of Tn under H0? Writing θ̂n = 1

2 + Zn,
and assuming that Zn is small, show that

Tn ' 4nZ2
n.

Using this and the central limit theorem, briefly justify the approximate distribution
of Tn given by asymptotic maximum-likelihood theory. What could you say if the
assumption that Zn is small failed?

28I Stochastic Financial Models

State the definitions of a martingale and a stopping time.

State and prove the optional sampling theorem.

If (Mn,Fn)n>0 is a martingale, under what conditions is it true that Mn converges
with probability 1 as n→∞? Show by an example that some condition is necessary.

A market consists of K > 1 agents, each of whom is either optimistic or pessimistic.
At each time n = 0, 1, . . ., one of the agents is selected at random, and chooses to talk
to one of the other agents (again selected at random), whose type he then adopts. If
choices in different periods are independent, show that the proportion of pessimists is a
martingale. What can you say about the limiting behaviour of the proportion of pessimists
as time n tends to infinity?
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29I Optimization and Control

An investor has a (possibly negative) bank balance x(t) at time t. For given positive
x(0), T, µ,A and r, he wishes to choose his spending rate u(t) > 0 so as to maximize

Φ(u;µ) ≡
∫ T

0

e−βt log u(t) dt+ µe−βTx(T ),

where dx(t)/dt = A + rx(t) − u(t). Find the investor’s optimal choice of control
u(t) = u∗(t;µ).

Let x∗(t;µ) denote the optimally-controlled bank balance. By considering next how
x∗(T ;µ) depends on µ, show that there is a unique positive µ∗ such that x∗(T ;µ∗) = 0. If
the original problem is modified by setting µ = 0, but requiring that x(T ) > 0, show that
the optimal control for this modified problem is u(t) = u∗(t;µ∗).

30A Partial Differential Equations

(a) State the Fourier inversion theorem for Schwartz functions S(R) on the real line.
Define the Fourier transform of a tempered distribution and compute the Fourier
transform of the distribution defined by the function F (x) = 1

2 for −t 6 x 6 +t
and F (x) = 0 otherwise. (Here t is any positive number.)

Use the Fourier transform in the x variable to deduce a formula for the solution to
the one dimensional wave equation

utt − uxx = 0 , with initial data u(0, x) = 0 , ut(0, x) = g(x) , (∗)

for g a Schwartz function. Explain what is meant by “finite propagation speed”
and briefly explain why the formula you have derived is in fact valid for arbitrary
smooth g ∈ C∞(R).

(b) State a theorem on the representation of a smooth 2π-periodic function g as a
Fourier series

g(x) =
∑
α∈Z

ĝ(α)eiαx

and derive a representation for solutions to (∗) as Fourier series in x.

(c) Verify that the formulae obtained in (a) and (b) agree for the case of smooth 2π-
periodic g.
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31B Asymptotic Methods

(a) Outline the Liouville–Green approximation to solutions w(z) of the ordinary
differential equation

d2w

dz2
= f(z)w

in a neighbourhood of infinity, in the case that, near infinity, f(z) has the convergent
series expansion

f(z) =
∞∑

s=0

fs

zs
,

with f0 6= 0.

In the case
f(z) = 1 +

1
z

+
2
z2

,

explain why you expect a basis of two asymptotic solutions w1(z), w2(z), with

w1(z) ∼ z
1
2 ez

(
1 +

a1

z
+
a2

z2
+ · · ·

)
,

w2(z) ∼ z−
1
2 e−z

(
1 +

b1
z

+
b2
z2

+ · · ·
)
,

as z → +∞, and show that a1 = − 9
8 .

(b) Determine, at leading order in the large positive real parameter λ, an approximation
to the solution u(x) of the eigenvalue problem:

u′′(x) + λ2g(x)u(x) = 0; u(0) = u(1) = 0;

where g(x) is greater than a positive constant for x ∈ [0, 1].
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32A Principles of Quantum Mechanics

Define the Heisenberg picture of quantum mechanics in relation to the Schrödinger
picture and explain how these formulations give rise to identical physical predictions.
Derive an equation of motion for an operator in the Heisenberg picture, assuming the
operator is independent of time in the Schrödinger picture.

State clearly the form of the unitary operator corresponding to a rotation through
an angle θ about an axis n (a unit vector) for a general quantum system. Verify your
statement for the case in which the system is a single particle by considering the effect of
an infinitesimal rotation on the particle’s position x̂ and on its spin S.

Show that if the Hamiltonian for a particle is of the form

H =
1

2m
p̂2 + U(x̂2)x̂ · S

then all components of the total angular momentum are independent of time in the
Heisenberg picture. Is the same true for either orbital or spin angular momentum?

[You may quote commutation relations involving components of x̂, p̂, L and S.]

33D Applications of Quantum Mechanics

For the one-dimensional potential

V (x) = −~2λ

m

∑
n

δ(x− na) ,

solve the Schrödinger equation for negative energy and obtain an equation that determines
possible energy bands. Show that the results agree with the tight-binding model in
appropriate limits.[
It may be useful to note that V (x) = −~2λ

ma

∑
n

e2πinx/a.
]

34D Statistical Physics

Two examples of phenomenological temperature measurements are (i) the mark
reached along the length of a liquid-in-glass thermometer; and (ii) the wavelength of the
brightest colour of electromagnetic radiation emitted by a hot body (used, for example,
to measure the surface temperature of a star).

Give the definition of temperature in statistical physics, and explain how the
analysis of ideal gases and black body radiation is used to calibrate and improve
phenomenological temperature measurements like those mentioned above. You should
give brief derivations of any key results that you use.
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35E Electrodynamics

The retarded scalar potential produced by a charge distribution ρ(t′,x′) is

ϕ(t,x) =
1

4πε0

∫
d3x′

ρ(t−R,x′)
R

,

where R = |R| and R = x − x′. By use of an appropriate delta function rewrite the
integral as an integral over both d3x′ and dt′ involving ρ(t′,x′).

Now specialize to a point charge q moving on a path x′ = x0(t′) so that we may
set

ρ(t′,x′) = q δ(3)(x′ − x0(t′)).

By performing the volume integral first obtain the Liénard–Wiechert potential

ϕ(t,x) =
q

4πε0
1

(R∗ − v ·R∗)
,

where R∗ and v should be specified.

Obtain the corresponding result for the magnetic potential.
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36A General Relativity

What are local inertial co-ordinates? What is their physical significance and how
are they related to the equivalence principle?

If Va are the components of a covariant vector field, show that

∂a Vb − ∂b Va

are the components of an anti-symmetric second rank covariant tensor field.

If Ka are the components of a contravariant vector field and gab the components
of a metric tensor, let

Qab = Kc∂c gab + gac ∂bK
c + gcb ∂aK

c .

Show that
Qab = 2∇(aKb) ,

where Ka = gabK
b, and ∇a is the Levi–Civita covariant derivative operator of the metric

gab.

In a particular co-ordinate system (x1, x2, x3, x4), it is given that Ka = (0, 0, 0, 1),
Qab = 0. Deduce that, in this co-ordinate system, the metric tensor gab is independent of
the co-ordinate x4. Hence show that

∇aKb = 1
2

(
∂aKb − ∂bKa

)
,

and that
E = −Ka

dxa

dλ
,

is constant along every geodesic xa(λ) in every co-ordinate system.

What further conditions must one impose on Ka and dxa/dλ to ensure that the
metric is stationary and that E is proportional to the energy of a particle moving along
the geodesic?

Paper 4 [TURN OVER



20

37B Fluid Dynamics II

A line force of magnitude F is applied in the positive x-direction to an unbounded
fluid, generating a thin two-dimensional jet along the positive x-axis. The fluid is at rest
at y = ±∞ and there is negligible motion in x < 0. Write down the pressure gradient
within the boundary layer. Deduce that the function M(x) defined by

M(x) =
∫ ∞

−∞
ρu2(x, y) dy

is independent of x for x > 0. Interpret this result, and explain why M = F . Use scaling
arguments to deduce that there is a similarity solution having stream function

ψ = (Fνx/ρ)1/3f(η) where η = y(F/ρν2x2)1/3 .

Hence show that f satisfies
3f ′′′ + f ′2 + ff ′′ = 0 . (∗)

Show that a solution of (∗) is

f(η) = A tanh(Aη/6) ,

where A is a constant to be determined by requiring that M is independent of x. Find
the volume flux, Q(x), in the jet. Briefly indicate why Q(x) increases as x increases.

[Hint: You may use
∫∞
−∞ sech4(x)dx = 4/3.]
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38C Waves

Obtain an expression for the compressive energyW (ρ) per unit volume for adiabatic
motion of a perfect gas, for which the pressure p is given in terms of the density ρ by a
relation of the form

p = p0(ρ/ρ0)γ , (∗)

where p0, ρ0 and γ are positive constants.

For one-dimensional motion with speed u write down expressions for the mass flux
and the momentum flux. Deduce from the energy flux u

(
p+W + 1

2ρu
2
)

together with
the mass flux that if the motion is steady then

γ

γ − 1
p

ρ
+ 1

2u
2 = constant. (†)

A one-dimensional shock wave propagates at constant speed along a tube containing
the gas. Ahead of the shock the gas is at rest with pressure p0 and density ρ0. Behind the
shock the pressure is maintained at the constant value (1 + β)p0 with β > 0. Determine
the density ρ1 behind the shock, assuming that (†) holds throughout the flow.

For small β show that the changes in pressure and density across the shock satisfy
the adiabatic relation (∗) approximately, correect to order β2.

39C Numerical Analysis

The difference equation

un+1
m = un

m + 3
2µ

(
un

m−1 − 2un
m + un

m+1

)
− 1

2µ
(
un−1

m−1 − 2un−1
m + un−1

m+1

)
,

where µ = ∆t/(∆x)2, is used to approximate a solution of the diffusion equation ut = uxx.

(a) Prove that, as ∆t→ 0 with constant µ, the local error of the method is O(∆t)2.

(b) Applying the Fourier stability test, show that the method is stable if and only if
µ 6 1

4 .

END OF PAPER
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