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1/I/1F Number Theory

State the prime number theorem, and Bertrand’s postulate.

Let S be a finite set of prime numbers, and write fs(x) for the number of positive
integers no larger than x, all of whose prime factors belong to S. Prove that

fs(x) 6 2#(S)
√
x,

where #(S) denotes the number of elements in S. Deduce that, if x is a strictly positive
integer, we have

π(x) >
log x
2 log 2

.

2/I/1F Number Theory

Let p be an odd prime number. Prove that 2 is a quadratic residue modulo p when
p ≡ 7 (mod 8). Deduce that, if q is a prime number strictly greater than 3 with q ≡ 3
(mod 4) such that 2q + 1 is also a prime number, then 2q − 1 is necessarily composite.
Why does the argument break down for q = 3?

3/I/1F Number Theory

Determine the continued fraction of
√

7. Deduce two pairs of solutions in positive
integers x, y of the equation

x2 − 7y2 = 1.
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3/II/11F Number Theory

State the Chinese remainder theorem. Let n be an odd positive integer. If n is
divisible by the square of a prime number p, prove that there exists an integer z such that
zp ≡ 1 (mod n) but z 6≡ 1 (mod n).

Define the Jacobi symbol (a
n

)
for any non-zero integer a. Give a numerical example to show that(a

n

)
= +1

does not imply in general that a is a square modulo n. State and prove the law of quadratic
reciprocity for the Jacobi symbol.

[You may assume the law of quadratic reciprocity for the Legendre symbol.]

Assume now that n is divisible by the square of a prime number. Prove that there
exists an integer a with (a, n) = 1 such that the congruence

a
n−1

2 ≡
(a
n

)
(mod n)

does not hold. Show further that this congruence fails to hold for at least half of all
relatively prime residue classes modulo n.

4/I/1F Number Theory

Prove Legendre’s formula relating π(x) and π(
√
x) for any positive real number x.

Use this formula to compute π(48).
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4/II/11F Number Theory

Let p be a prime number, and let f(x) be a polynomial with integer coefficients,
whose leading coefficient is not divisible by p. Prove that the congruence

f(x) ≡ 0 (mod p)

has at most d solutions, where d is the degree of f(x).

Deduce that all coefficients of the polynomial

xp−1 − 1−
(
(x− 1)(x− 2) · · · (x− p+ 1)

)
must be divisible by p, and prove that:

(i) (p− 1)! + 1 ≡ 0 (mod p);

(ii) if p is odd, the numerator of the fraction

up = 1 +
1
2

+ · · ·+ 1
p− 1

is divisible by p.

Assume now that p > 5. Show by example that (i) cannot be strengthened to
(p− 1)! + 1 ≡ 0 (mod p2).
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1/I/2F Topics in Analysis

Let n be an integer with n > 1. Are the following statements true or false? Give
proofs.

(i) There exists a real polynomial Tn of degree n such that

Tn(cos t) = cosnt

for all real t.

(ii) There exists a real polynomial Rn of degree n such that

Rn(cosh t) = coshnt

for all real t.

(iii) There exists a real polynomial Sn of degree n such that

Sn(cos t) = sinnt

for all real t.
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2/II/12F Topics in Analysis

(i) Suppose that f : [0, 1] → R is continuous. Prove the theorem of Bernstein which
states that, if we write

fm(t) =
m∑

r=0

(
m

r

)
f(r/m)tr(1− t)m−r,

for 0 6 t 6 1 , then fm → f uniformly as m→∞ .

(ii) Let n > 1 , a1,n, a2,n, . . . , an,n ∈ R and let x1,n, x2,n, . . . , xn,n be distinct points
in [0, 1] . We write

In(g) =
n∑

j=1

aj,ng(xj,n)

for every continuous function g : [0, 1] → R . Show that, if

In(P ) =
∫ 1

0

P (t) dt ,

for all polynomials P of degree 2n− 1 or less, then aj,n > 0 for all 1 6 j 6 n and∑n
j=1 aj,n = 1 .

(iii) If In satisfies the conditions set out in (ii), show that

In(f) →
∫ 1

0

f(t) dt

as n→∞ whenever f : [0, 1] → R is continuous.

2/I/2F Topics in Analysis

Write
P+ = {(x, y) ∈ R2 : x, y > 0}.

Suppose that K is a convex, compact subset of R2 with K ∩ P+ 6= ∅. Show that there is
a unique point (x0, y0) ∈ K ∩ P+ such that

xy 6 x0y0

for all (x, y) ∈ K ∩ P+.
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3/II/12F Topics in Analysis

(i) State and prove Liouville’s theorem on approximation of algebraic numbers by
rationals.

(ii) Consider the continued fraction

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

where the aj are strictly positive integers. You may assume the following algebraic
facts about the nth convergent pn/qn.

pnqn−1 − pn−1qn = (−1)n, qn = anqn−1 + qn−2.

Show that ∣∣∣∣pn

qn
− x

∣∣∣∣ 6
1

qnqn+1
.

Give explicit values for an so that x is transcendental and prove that you have done
so.

3/I/2F Topics in Analysis

State a version of Runge’s theorem and use it to prove the following theorem:

Let D = {z ∈ C : |z| < 1} and define f : D → C by the condition

f(reiθ) = r3/2e3iθ/2

for all 0 6 r < 1 and all 0 6 θ < 2π. (We take r1/2 to be the positive square root.) Then
there exists a sequence of analytic functions fn : D → C such that fn(z) → f(z) for each
z ∈ D as n→∞.

4/I/2F Topics in Analysis

State Brouwer’s fixed point theorem for a triangle in two dimensions.

Let A = (aij) be a 3 × 3 matrix with real positive entries and such that all its
columns are non-zero vectors. Show that A has an eigenvector with positive entries.
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1/I/3G Geometry of Group Actions

Show that there are two ways to embed a regular tetrahedron in a cube C so that
the vertices of the tetrahedron are also vertices of C. Show that the symmetry group of
C permutes these tetrahedra and deduce that the symmetry group of C is isomorphic to
the Cartesian product S4 × C2 of the symmetric group S4 and the cyclic group C2.

1/II/12G Geometry of Group Actions

Define the Hausdorff d-dimensional measure Hd(C) and the Hausdorff dimension
of a subset C of R.

Set s = log 2/ log 3. Define the Cantor set C and show that its Hausdorff
s-dimensional measure is at most 1.

Let (Xn) be independent Bernoulli random variables that take the values 0 and 2,
each with probability 1

2 . Define

ξ =
∞∑

n=1

Xn

3n
.

Show that ξ is a random variable that takes values in the Cantor set C.

Let U be a subset of R with 3−(k+1) 6 diam(U) < 3−k. Show that P(ξ ∈ U) 6 2−k

and deduce that, for any set U ⊂ R, we have

P(ξ ∈ U) 6 2(diam(U))s .

Hence, or otherwise, prove that Hs(C) > 1
2 and that the Cantor set has Hausdorff

dimension s.

2/I/3G Geometry of Group Actions

Explain what is meant by a lattice in the Euclidean plane R2. Prove that such a
lattice is either Zw for some vector w ∈ R2 or else Zw1+Zw2 for two linearly independent
vectors w1,w2 in R2.

3/I/3G Geometry of Group Actions

Let G be a 2-dimensional Euclidean crystallographic group. Define the lattice and
point group corresponding to G.

Prove that any non-trivial rotation in the point group of G must have order 2, 3, 4
or 6.
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4/I/3G Geometry of Group Actions

Let Γ be a circle on the Riemann sphere. Explain what it means to say that two
points of the sphere are inverse points for the circle Γ. Show that, for each point z on the
Riemann sphere, there is a unique point z′ with z, z′ inverse points. Define inversion in Γ.

Prove that the composition of an even number of inversions is a Möbius transfor-
mation.

4/II/12G Geometry of Group Actions

Explain what it means to say that a group G is a Kleinian group. What is the
definition of the limit set for the group G? Prove that a fixed point of a parabolic element
in G must lie in the limit set.

Show that the matrix
(

1 + aw −aw2

a 1− aw

)
represents a parabolic transformation

for any non-zero choice of the complex numbers a and w. Find its fixed point.

The Gaussian integers are Z[i] = {m+ in : m,n ∈ Z}. Let G be the set of Möbius

transformations z 7→ az + b

cz + d
with a, b, c, d ∈ Z[i] and ad − bc = 1. Prove that G is a

Kleinian group. For each point w =
p+ iq

r
with p, q, r non-zero integers, find a parabolic

transformation T ∈ G that fixes w. Deduce that the limit set for G is all of the Riemann
sphere.
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1/I/4G Coding and Cryptography

Let Σ1 and Σ2 be alphabets of sizes m and a. What does it mean to say that
f : Σ1 → Σ∗

2 is a decipherable code? State the inequalities of Kraft and Gibbs, and
deduce that if letters are drawn from Σ1 with probabilities p1, . . . , pm then the expected
word length is at least H(p1, . . . , pm)/ log a.

2/I/4G Coding and Cryptography

Briefly explain how and why a signature scheme is used. Describe the El Gamal
scheme.

1/II/11G Coding and Cryptography

Define the bar product C1|C2 of linear codes C1 and C2, where C2 is a subcode of
C1. Relate the rank and minimum distance of C1|C2 to those of C1 and C2. Show that if
C⊥ denotes the dual code of C, then

(C1|C2)⊥ = C⊥2 |C⊥1 .

Using the bar product construction, or otherwise, define the Reed–Muller code RM(d, r)
for 0 6 r 6 d. Show that if 0 6 r 6 d−1, then the dual of RM(d, r) is again a Reed–Muller
code.

3/I/4G Coding and Cryptography

Compute the rank and minimum distance of the cyclic code with generator
polynomial g(X) = X3 +X + 1 and parity-check polynomial h(X) = X4 +X2 +X + 1.
Now let α be a root of g(X) in the field with 8 elements. We receive the word
r(X) = X5 + X3 + X (mod X7 − 1). Verify that r(α) = α4, and hence decode r(X)
using minimum-distance decoding.

2/II/11G Coding and Cryptography

Define the capacity of a discrete memoryless channel. State Shannon’s second
coding theorem and use it to show that the discrete memoryless channel with channel
matrix (

1 0
1
2

1
2

)
has capacity log 5− 2 .
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4/I/4G Coding and Cryptography

What is a linear feedback shift register? Explain the Berlekamp–Massey method
for recovering the feedback polynomial of a linear feedback shift register from its output.
Illustrate in the case when we observe output

1 0 1 0 1 1 0 0 1 0 0 0 . . . .
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1/I/5I Statistical Modelling

According to the Independent newspaper (London, 8 March 1994) the Metropolitan
Police in London reported 30475 people as missing in the year ending March 1993. For
those aged 18 or less, 96 of 10527 missing males and 146 of 11363 missing females were
still missing a year later. For those aged 19 and above, the values were 157 of 5065 males
and 159 of 3520 females. This data is summarised in the table below.

age gender still total

1 Kid M 96 10527

2 Kid F 146 11363

3 Adult M 157 5065

4 Adult F 159 3520

Explain and interpret the R commands and (slightly abbreviated) output below.
You should describe the model being fitted, explain how the standard errors are calculated,
and comment on the hypothesis tests being described in the summary. In particular, what
is the worst of the four categories for the probability of remaining missing a year later?

> fit <- glm(still/total ~ age + gender, family = binomial,

+ weights = total)

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.06073 0.07216 -42.417 < 2e-16 ***

ageKid -1.27079 0.08698 -14.610 < 2e-16 ***

genderM -0.37211 0.08671 -4.291 1.78e-05 ***

Residual deviance: 0.06514 on 1 degrees of freedom

For a person who was missing in the year ending in March 1993, find a formula,
as a function of age and gender, for the estimated expected probability that they are still
missing a year later.
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1/II/13I Statistical Modelling

This problem deals with data collected as the number of each of two different strains
of Ceriodaphnia organisms are counted in a controlled environment in which reproduction
is occurring among the organisms. The experimenter places into the containers a varying
concentration of a particular component of jet fuel that impairs reproduction. Hence it
is anticipated that as the concentration of jet fuel grows, the mean number of organisms
should decrease.

The table below gives a subset of the data. The full dataset has n = 70 rows. The
first column provides the number of organisms, the second the concentration of jet fuel
(in grams per litre) and the third specifies the strain of the organism.

number fuel strain

82 0 1

58 0 0

45 0.5 1

27 0.5 0

29 0.75 1

15 1.25 1

6 1.25 1

8 1.5 0

4 1.75 0

. . .

. . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, explain how the standard errors
are calculated, and comment on the hypothesis tests being described in the summary.

> fit1 <- glm(number ~ fuel + strain + fuel:strain,family = poisson)

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.14443 0.05101 81.252 < 2e-16 ***

fuel -1.47253 0.07007 -21.015 < 2e-16 ***

strain 0.33667 0.06704 5.022 5.11e-07 ***

fuel:strain -0.12534 0.09385 -1.336 0.182

The following R code fits two very similar models. Briefly explain the difference
between these models and the one above. Motivate the fitting of these models in light of
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the summary from the fit of the one above.

> fit2 <- glm(number ~ fuel + strain, family = poisson)

> fit3 <- glm(number ~ fuel, family = poisson)

Denote by H1, H2, H3 the three hypotheses being fitted in sequence above.

Explain the hypothesis tests, including an approximate test of the fit of H1, that
can be performed using the output from the following R code. Use these numbers to
comment on the most appropriate model for the data.

> c(fit1$dev, fit2$dev, fit3$dev)

[1] 84.59557 86.37646 118.99503

> qchisq(0.95, df = 1)

[1] 3.841459

2/I/5I Statistical Modelling

Consider the linear regression setting where the responses Yi, i = 1, . . . , n are
assumed independent with means µi = xT

i β. Here xi is a vector of known explanatory
variables and β is a vector of unknown regression coefficients.

Show that if the response distribution is Laplace, i.e.,

Yi ∼ f(yi;µi, σ) = (2σ)−1 exp
{
−|yi − µi|

σ

}
, i = 1, . . . , n; yi, µi ∈ R; σ ∈ (0,∞);

then the maximum likelihood estimate β̂ of β is obtained by minimising

S1(β) =
n∑

i=1

|Yi − xT
i β|.

Obtain the maximum likelihood estimate for σ in terms of S1(β̂).

Briefly comment on why the Laplace distribution cannot be written in exponential
dispersion family form.
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3/I/5I Statistical Modelling

Consider two possible experiments giving rise to observed data yij where
i = 1, . . . , I, j = 1, . . . , J .

1. The data are realizations of independent Poisson random variables, i.e.,

Yij ∼ f1(yij ;µij) =
µ

yij

ij

yij !
exp{−µij}

where µij = µij(β), with β an unknown (possibly vector) parameter. Write β̂ for
the maximum likelihood estimator (m.l.e.) of β and ŷij = µij(β̂) for the (i, j)th
fitted value under this model.

2. The data are components of a realization of a multinomial random ‘vector’

Y ∼ f2((yij);n, (pij)) = n!
I∏

i=1

J∏
j=1

p
yij

ij

yij !

where the yij are non-negative integers with

I∑
i=1

J∑
j=1

yij = n and pij(β) =
µij(β)
n

.

Write β∗ for the m.l.e. of β and y∗ij = npij(β∗) for the (i, j)th fitted value under
this model.

Show that, if
I∑

i=1

J∑
j=1

ŷij = n ,

then β̂ = β∗ and ŷij = y∗ij for all i, j. Explain the relevance of this result in the context
of fitting multinomial models within a generalized linear model framework.
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4/I/5I Statistical Modelling

Consider the normal linear model Y = Xβ + ε in vector notation, where

Y =

 Y1
...
Yn

 , X =

xT
1
...
xT

n

 , β =

 β1
...
βp

 , ε =

 ε1
...
εn

 , εi ∼ i.i.d. N(0, σ2),

where xT
i = (xi1, . . . , xip) is known and X is of full rank (p < n). Give expressions for

maximum likelihood estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint
distribution.

Suppose that there is a new pair (x∗, y∗), independent of (x1, y1), . . . , (xn, yn),
satisfying the relationship

y∗ = x∗Tβ + ε∗, where ε∗ ∼ N(0, σ2).

We suppose that x∗ is known, and estimate y∗ by ỹ = x∗Tβ̂. State the distribution of

ỹ − y∗

σ̃τ
, where σ̃2 =

n

n− p
σ̂2 and τ2 = x∗T(XTX)−1x∗ + 1.

Find the form of a (1− α)–level prediction interval for y∗.

4/II/13I Statistical Modelling

Let Y have a Gamma distribution with density

f(y;α, λ) =
λαyα−1

Γ(α)
e−λy .

Show that the Gamma distribution is of exponential dispersion family form. Deduce
directly the corresponding expressions for E[Y ] and Var[Y ] in terms of α and λ. What is
the canonical link function?

Let p < n. Consider a generalised linear model (g.l.m.) for responses yi, i = 1, . . . , n
with random component defined by the Gamma distribution with canonical link g(µ), so
that g(µi) = ηi = xT

i β, where β = (β1, . . . , βp)T is the vector of unknown regression
coefficients and xi = (xi1, . . . , xip)T is the vector of known values of the explanatory
variables for the ith observation, i = 1, . . . , n.

Obtain expressions for the score function and Fisher information matrix and explain
how these can be used in order to approximate β̂, the maximum likelihood estimator
(m.l.e.) of β.

[Use the canonical link function and assume that the dispersion parameter is known.]

Finally, obtain an expression for the deviance for a comparison of the full (sat-
urated) model to the g.l.m. with canonical link using the m.l.e. β̂ (or estimated mean
µ̂ = Xβ̂).
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1/I/6B Mathematical Biology

A chemostat is a well-mixed tank of given volume V0 that contains water in which
lives a population N(t) of bacteria that consume nutrient whose concentration is C(t) per
unit volume. An inflow pipe supplies a solution of nutrient at concentration C0 and at a
constant flow rate of Q units of volume per unit time. The mixture flows out at the same
rate through an outflow pipe. The bacteria consume the nutrient at a rate NK(C), where

K(C) =
KmaxC

K0 + C
,

and the bacterial population grows at a rate γNK(C), where 0 < γ < 1 .

Write down the differential equations for N(t), C(t) and show that they can be
rescaled into the following form:

dn

dτ
= α

cn

1 + c
− n ,

dc

dτ
= − cn

1 + c
− c+ β ,

where α, β are positive constants, to be found.

Show that this system of equations has a non-trivial steady state if α > 1 and

β >
1

α− 1
, and that it is stable.

2/I/6B Mathematical Biology

A field contains Xn seed-producing poppies in August of year n. On average each
poppy produces γ seeds, a number that is assumed not to vary from year to year. A
fraction σ of seeds survive the winter and a fraction α of those germinate in May of year
n+ 1. A fraction β of those that survive the next winter germinate in year n+ 2 . Show
that Xn satisfies the following difference equation:

Xn+1 = ασγXn + βσ2(1− α)γXn−1 .

Write down the general solution of this equation, and show that the poppies in the field
will eventually die out if

σγ[(1− α)βσ + α] < 1 .
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2/II/13B Mathematical Biology

Show that the concentration C(x, t) of a diffusible chemical substance in a station-
ary medium satisfies the partial differential equation

∂C

∂t
= ∇ · (D∇C) + F ,

where D is the diffusivity and F (x, t) is the rate of supply of the chemical.

A finite amount of the chemical, 4πM , is supplied at the origin at time t = 0 , and
spreads out in a spherically symmetric manner, so that C = C(r, t) for r > 0, t > 0 , where
r is the radial coordinate. The diffusivity is given by D = kC , for constant k . Show, by
dimensional analysis or otherwise, that it is appropriate to seek a similarity solution in
which

C =
Mα

(k t)β
f(ξ) , ξ =

r

(Mkt)γ
and

∫ ∞

0

ξ2f(ξ) dξ = 1 ,

where α, β, γ are constants to be determined, and derive the ordinary differential equation
satisfied by f(ξ).

Solve this ordinary differential equation, subject to appropriate boundary condi-
tions, and deduce that the chemical occupies a finite spherical region of radius

r0(t) = (75Mkt)1/5 .

[Note: in spherical polar coordinates

∇C ≡
(
∂C

∂r
, 0, 0

)
and ∇ · (V (r, t), 0, 0) ≡ 1

r2
∂

∂r
(r2V ) .

]

3/I/6B Mathematical Biology

Consider a birth and death process in which births always give rise to two offspring,
with rate λ, while the death rate per individual is β.

Write down the master equation (or probability balance equation) for this system.

Show that the population mean is given by

〈n〉 =
2λ
β

(1− e−βt) + n0e
−βt

where n0 is the initial population mean, and that the population variance satisfies

σ2 → 3λ/β as t→∞ .
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3/II/13B Mathematical Biology

The number density of a population of cells is n(x, t). The cells produce a chemical
whose concentration is C(x, t) and respond to it chemotactically. The equations governing
n and C are

∂n

∂t
= γn(n0 − n) +Dn∇2n− χ∇ · (n∇C)

∂C

∂t
= αn− βC +Dc∇2C.

(i) Give a biological interpretation of each term in these equations, where you may
assume that α, β, γ, n0, Dn, Dc and χ are all positive.

(ii) Show that there is a steady-state solution that is stable to spatially invariant
disturbances.

(iii) Analyse small, spatially-varying perturbations to the steady state that satisfy
∇2φ = −k2φ for any variable φ, and show that a chemotactic instability is possible
if

χαn0 > βDn + γn0Dc + (4βγn0DnDc)1/2 .

(iv) Find the critical value of k at which the instability first appears as χ is increased.

4/I/6B Mathematical Biology

The non-dimensional equations for two competing populations are

du

dt
= u(1− υ)− ε1u

2,

dυ

dt
= α

[
υ(1− u)− ε2υ

2
]
.

Explain the meaning of each term in these equations.

Find all the fixed points of this system when α > 0, 0 < ε1 < 1 and 0 < ε2 < 1,
and investigate their stability.
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1/I/7E Dynamical Systems

Given a non-autonomous kth-order differential equation

dky

dtk
= g

(
t, y,

dy

dt
,
d2y

dt2
, . . . ,

dk−1y

dtk−1

)
with y ∈ R, explain how it may be written in the autonomous first-order form ẋ = f(x)
for suitably chosen vectors x and f .

Given an autonomous system ẋ = f(x) in Rn, define the corresponding flow φt(x).
What is φs(φt(x)) equal to? Define the orbit O(x) through x and the limit set ω(x) of x.
Define a homoclinic orbit.

3/II/14E Dynamical Systems

The Lorenz equations are

ẋ = σ(y − x)
ẏ = rx− y − xz

ż = xy − bz

where r, σ and b are positive constants and (x, y, z) ∈ R3.

(i) Show that the origin is globally asymptotically stable for 0 < r < 1 by considering
a function V (x, y, z) = 1

2 (x2 + Ay2 + Bz2) with a suitable choice of constants A
and B.

(ii) State, without proof, the Centre Manifold Theorem.

Show that the fixed point at the origin is nonhyperbolic at r = 1. What are the
dimensions of the linear stable and (non-extended) centre subspaces at this point?

(iii) Let σ = 1 from now on. Make the substitutions u = x+ y, v = x− y and µ = r− 1
and derive the resulting equations for u̇, v̇ and ż.

The extended centre manifold is given by

v = V (u, µ), z = Z(u, µ)

where V and Z can be expanded as power series about u = µ = 0. What
is known about V and Z from the Centre Manifold Theorem? Assuming that
µ = O(u2), determine Z correct to O(u2) and V to O(u3). Hence obtain the
evolution equation on the extended centre manifold correct to O(u3), and identify
the type of bifurcation.
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2/I/7E Dynamical Systems

Find and classify the fixed points of the system

ẋ = (1− x2)y ,

ẏ = x(1− y2) .

What are the values of their Poincaré indices? Prove that there are no periodic orbits.
Sketch the phase plane.

4/II/14E Dynamical Systems

Consider the one-dimensional map F : R → R defined by

xi+1 = F (xi) = xi(ax2
i + bxi + µ),

where a and b are constants, µ is a parameter and a 6= 0.

(i) Find the fixed points of F and determine the linear stability of x = 0. Hence show
that there are bifurcations at µ = 1, at µ = −1 and, if b 6= 0, at µ = 1 + b2/4a.

Sketch the bifurcation diagram for each of the cases:

(1) a > b = 0, (2) a, b > 0 and (3) a, b < 0.

In each case show the locus and stability of the fixed points in the (µ, x)-plane, and
state the type of each bifurcation. [Assume that there are no further bifurcations
in the region sketched.]

(ii) For the case F (x) = x(µ− x2) (i.e. a = −1, b = 0), you may assume that

F 2(x) = x+ x(µ− 1− x2)(µ+ 1− x2)(1− µx2 + x4) .

Show that there are at most three 2-cycles and determine when they exist. By
considering F ′(xi)F ′(xi+1), or otherwise, show further that one 2-cycle is always
unstable when it exists and that the others are unstable when µ >

√
5. Sketch the

bifurcation diagram showing the locus and stability of the fixed points and 2-cycles.
State briefly what you would expect to occur in the region µ >

√
5.
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3/I/7E Dynamical Systems

State the Poincaré–Bendixson Theorem for a system ẋ = f(x) in R2.

Prove that if k2 < 4 then the system

ẋ = x− y − x3 − xy2 − k2xy2

ẏ = y + x− x2y − y3 − k2x2y

has a periodic orbit in the region 2/(2 + k2) 6 x2 + y2 6 1.

4/I/7E Dynamical Systems

By considering the binary representation of the sawtooth map, F (x) = 2x [mod 1]
for x ∈ [0, 1), show that:

(i) F has sensitive dependence on initial conditions on [0, 1).

(ii) F has topological transitivity on [0, 1).

(iii) Periodic points are dense in [0, 1).

Find all the 4-cycles of F and express them as fractions.
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1/I/8B Further Complex Methods

The coefficients p(z) and q(z) of the differential equation

w′′(z) + p(z)w′(z) + q(z)w(z) = 0 (∗)

are analytic in the punctured disc 0 < |z| < R, and w1(z) and w2(z) are linearly
independent solutions in the neighbourhood of the point z0 in the disc. By considering the
effect of analytically continuing w1 and w2, show that the equation (∗) has a non-trivial
solution of the form

w(z) = zσ
∞∑

n=−∞
cnz

n .

2/I/8B Further Complex Methods

The function I(z) is defined by

I(z) =
1

Γ(z)

∫ ∞

0

tz−1

et + 1
dt .

For what values of z is I(z) analytic?

By considering I(z)−ζ(z), where ζ(z) is the Riemann zeta function which you may
assume is given by

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt (Re z > 1) ,

show that I(z) =
(
1− 21−z

)
ζ(z) . Deduce from this result that the analytic continuation

of I(z) is an entire function. [You may use properties of ζ(z) without proof.]
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3/I/8B Further Complex Methods

Let w1(z) and w2(z) be any two linearly independent branches of the P -function 0 ∞ 1
α β γ z
α′ β′ γ′

 ,

where α+ α′ + β + β′ + γ + γ′ = 1, and let W (z) be the Wronskian of w1(z) and w2(z).

(i) How is W (z) related to the Wronskian of the principal branches of the P -function
at z = 0?

(ii) Show that z−α−α′+1(1− z)−γ−γ′+1W (z) is an entire function.

(iii) Given that zβ+β′+1W (z) is bounded as z →∞, show that

W (z) = Azα+α′−1(1− z)γ+γ′−1,

where A is a non-zero constant.

1/II/14B Further Complex Methods

The function J(z) is defined by

J(z) =
∫
P
tz−1(1− t)b−1dt

where b is a constant (which is not an integer). The path of integration, P, is the
Pochhammer contour, defined as follows. It starts at a point A on the axis between 0
and 1, then it circles the points 1 and 0 in the negative sense, then it circles the points 1
and 0 in the positive sense, returning to A. At the start of the path, arg(t) = arg(1−t) = 0
and the integrand is defined at other points on P by analytic continuation along P.

(i) For what values of z is J(z) analytic? Give brief reasons for your answer.

(ii) Show that, in the case Re z > 0 and Re b > 0 ,

J(z) = −4e−πi(z+b) sin(πz) sin(πb) B(z, b) ,

where B(z, b) is the Beta function.

(iii) Deduce that the only singularities of B(z, b) are simple poles. Explain carefully
what happens if z is a positive integer.
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4/I/8B Further Complex Methods

The hypergeometric function F (a, b; c; z) is defined by

F (a, b; c; z) = K

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt

where |arg(1− tz)| < π and K is a constant determined by the condition F (a, b; c; 0) = 1.

(i) Express K in terms of Gamma functions.

(ii) By considering the nth derivative F (n)(a, b; c; 0), show that F (a, b; c; z) = F (b, a; c; z).

2/II/14B Further Complex Methods

Show that the equation

zw′′ − (1 + z)w′ + 2(1− z)w = 0

has solutions of the form w(z) =
∫

γ
eztf(t) dt, where

f(t) =
1

(t− 2)(t+ 1)2
,

provided that γ is suitably chosen.

Hence find the general solution, evaluating the integrals explicitly. Show that the
general solution is entire, but that there is no solution that satisfies w(0) = 0 and w′(0) 6= 0.
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1/I/9C Classical Dynamics

The action for a system with generalized coordinates, qi(t), for a time interval
[t1, t2] is given by

S =
∫ t2

t1

L(qi, q̇i) dt ,

where L is the Lagrangian, and where the end point values qi(t1) and qi(t2) are fixed
at specified values. Derive Lagrange’s equations from the principle of least action by
considering the variation of S for all possible paths.

What is meant by the statement that a particular coordinate qj is ignorable? Show
that there is an associated constant of the motion, to be specified in terms of L .

A particle of mass m is constrained to move on the surface of a sphere of radius a
under a potential, V (θ), for which the Lagrangian is given by

L =
m

2
a2

(
θ̇2 + φ̇2 sin2 θ

)
− V (θ) .

Identify an ignorable coordinate and find the associated constant of the motion, expressing
it as a function of the generalized coordinates. Evaluate the quantity

H = q̇i
∂L

∂q̇i
− L

in terms of the same generalized coordinates, for this case. Is H also a constant of the
motion? If so, why?
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2/II/15C Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom is described by the phase space
coordinates (q1, q2, ..., qn) and momenta (p1, p2, ..., pn). Show that the phase-space
volume element

dτ = dq1dq2.....dqndp1dp2.....dpn

is conserved under time evolution.

(b) The Hamiltonian, H , for the system in part (a) is independent of time. Show that
if F (q1, ..., qn, p1, ..., pn) is a constant of the motion, then the Poisson bracket [F,H]
vanishes. Evaluate [F,H] when

F =
n∑

k=1

pk

and

H =
n∑

k=1

p2
k + V (q1, q2, ..., qn) ,

where the potential V depends on the qk (k = 1, 2, ..., n) only through quantities of
the form qi − qj for i 6= j .

(c) For a system with one degree of freedom, state what is meant by the transformation

(q, p) →
(
Q(q, p), P (q, p)

)
being canonical. Show that the transformation is canonical if and only if the Poisson
bracket [Q,P ] = 1 .
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2/I/9C Classical Dynamics

The Lagrangian for a particle of mass m and charge e moving in a magnetic field
with position vector r = (x, y, z) is given by

L = 1
2mṙ2 + e

ṙ ·A
c

,

where the vector potential A(r), which does not depend on time explicitly, is related to
the magnetic field B through

B = ∇×A .

Write down Lagrange’s equations and use them to show that the equation of motion of
the particle can be written in the form

mr̈ = e
ṙ×B
c

.

Deduce that the kinetic energy, T, is constant.

When the magnetic field is of the form B = (0, 0, dF/dx) for some specified function
F (x), show further that

ẋ2 =
2T
m

−
(
eF (x) + C

)2

m2c2
+ D ,

where C and D are constants.

3/I/9C Classical Dynamics

A particle of mass m1 is constrained to move in the horizontal (x, y) plane, around
a circle of fixed radius r1 whose centre is at the origin of a Cartesian coordinate system
(x, y, z). A second particle of mass m2 is constrained to move around a circle of fixed
radius r2 that also lies in a horizontal plane, but whose centre is at (0, 0, a). It is given
that the Lagrangian L of the system can be written as

L =
m1

2
r21 φ̇

2
1 +

m2

2
r22 φ̇

2
2 + ω2r1r2 cos(φ2 − φ1) ,

using the particles’ cylindrical polar angles φ1 and φ2 as generalized coordinates. Deduce
the equations of motion and use them to show that m1r

2
1 φ̇1 + m2r

2
2 φ̇2 is constant, and

that ψ = φ2 − φ1 obeys an equation of the form

ψ̈ = −k2 sinψ ,

where k is a constant to be determined.

Find two values of ψ corresponding to equilibria, and show that one of the two
equilibria is stable. Find the period of small oscillations about the stable equilibrium.
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4/II/15C Classical Dynamics

The Hamiltonian for an oscillating particle with one degree of freedom is

H =
p2

2m
+ V (q, λ) .

The mass m is a constant, and λ is a function of time t alone. Write down Hamilton’s
equations and use them to show that

dH

dt
=

∂H

∂λ

dλ

dt
.

Now consider a case in which λ is constant and the oscillation is exactly periodic.
Denote the constant value of H in that case by E. Consider the quantity I =
(2π)−1

∮
p dq, where the integral is taken over a single oscillation cycle. For any given

function V (q, λ) show that I can be expressed as a function of E and λ alone, namely

I = I(E, λ) =
(2m)1/2

2π

∮ (
E − V (q, λ)

)1/2
dq ,

where the sign of the integrand alternates between the two halves of the oscillation cycle.
Let τ be the period of oscillation. Show that the function I(E, λ) has partial derivatives

∂ I

∂E
=

τ

2π
and

∂ I

∂λ
= − 1

2π

∮
∂V

∂λ
dt .

You may assume without proof that ∂/∂E and ∂/∂λ may be taken inside the integral.

Now let λ change very slowly with time t , by a negligible amount during an
oscillation cycle. Assuming that, to sufficient approximation,

d〈H〉
dt

=
∂〈H〉
∂λ

dλ

dt

where 〈H〉 is the average value of H over an oscillation cycle, and that

d I

dt
=

∂ I

∂E

d〈H〉
dt

+
∂ I

∂λ

dλ

dt
,

deduce that d I/dt = 0 , carefully explaining your reasoning.

When
V (q, λ) = λq2n

with n a positive integer and λ positive, deduce that

〈H〉 = Cλ1/(n+1)

for slowly-varying λ, where C is a constant.

[Do not try to solve Hamilton’s equations. Rather, consider the form taken by I. ]
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4/I/9C Classical Dynamics

(a) Show that the principal moments of inertia for the oblate spheroid of mass M
defined by

(x2
1 + x2

2)
a2

+
x2

3

a2(1− e2)
6 1

are given by (I1, I2, I3) = 2
5Ma2 (1− 1

2e
2, 1− 1

2e
2, 1). Here a is the semi-major

axis and e is the eccentricity.

[You may assume that a sphere of radius a has principal moments of inertia 2
5Ma2.]

(b) The spheroid in part (a) rotates about an axis that is not a principal axis. Euler’s
equations governing the angular velocity (ω1, ω2, ω3) as viewed in the body frame
are

I1
dω1

dt
= (I2 − I3)ω2ω3 ,

I2
dω2

dt
= (I3 − I1)ω3ω1 ,

and
I3
dω3

dt
= (I1 − I2)ω1ω2 .

Show that ω3 is constant. Show further that the angular momentum vector
precesses around the x3 axis with period

P =
2π(2− e2)
e2ω3

.
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1/I/10A Cosmology

Describe the motion of light rays in an expanding universe with scale factor a(t),
and derive the redshift formula

1 + z =
a(t0)
a(te)

,

where the light is emitted at time te and observed at time t0.

A galaxy at comoving position x is observed to have a redshift z. Given that the
galaxy emits an amount of energy L per unit time, show that the total energy per unit
time crossing a sphere centred on the galaxy and intercepting the earth is L/(1 + z)2.
Hence, show that the energy per unit time per unit area passing the earth is

L

(1 + z)2
1

4π|x|2a2(t0)
.

2/I/10A Cosmology

The number density of photons in thermal equilibrium at temperature T takes the
form

n =
8π
c3

∫
ν2dν

exp(hν/kT )− 1
.

At time t = tdec and temperature T = Tdec, photons decouple from thermal equilibrium.
By considering how the photon frequency redshifts as the universe expands, show that
the form of the equilibrium frequency distribution is preserved, with the temperature for
t > tdec defined by

T ≡ a(tdec)
a(t)

Tdec .

Show that the photon number density n and energy density ε can be expressed in
the form

n = αT 3 , ε = ξT 4 ,

where the constants α and ξ need not be evaluated explicitly.
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1/II/15A Cosmology

In a homogeneous and isotropic universe, the scale factor a(t) obeys the Friedmann
equation (

ȧ

a

)2

+
kc2

a2
=

8πG
3

ρ ,

where ρ is the matter density, which, together with the pressure P , satisfies

ρ̇ = −3
ȧ

a

(
ρ+ P/c2

)
.

Here, k is a constant curvature parameter. Use these equations to show that the rate of
change of the Hubble parameter H = ȧ/a satisfies

Ḣ +H2 = −4πG
3

(
ρ+ 3P/c2

)
.

Suppose that an expanding Friedmann universe is filled with radiation (density
ρR and pressure PR = ρRc

2/3) as well as a “dark energy” component (density ρΛ and
pressure PΛ = −ρΛc

2). Given that the energy densities of these two components are
measured today (t = t0) to be

ρR0 = β
3H2

0

8πG
and ρΛ0 =

3H2
0

8πG
with constant β > 0 and a(t0) = 1 ,

show that the curvature parameter must satisfy kc2 = βH2
0 . Hence derive the following

relations for the Hubble parameter and its time derivative:

H2 =
H2

0

a4

(
β − βa2 + a4

)
,

Ḣ = −β H
2
0

a4

(
2− a2

)
.

Show qualitatively that universes with β > 4 will recollapse to a Big Crunch in the future.
[Hint: Sketch a4H2 and a4Ḣ versus a2 for representative values of β.]

For β = 4, find an explicit solution for the scale factor a(t) satisfying a(0) = 0.
Find the limiting behaviours of this solution for large and small t. Comment briefly on
their significance.
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3/I/10A Cosmology

The number density of a non-relativistic species in thermal equilibrium is given by

n = gs

(
2πmkT
h2

)3/2

exp
[
(µ−mc2)/kT

]
.

Suppose that thermal and chemical equilibrium is maintained between protons p (mass
mp, degeneracy gs = 2), neutrons n (mass mn ≈ mp, degeneracy gs = 2) and helium-4
nuclei 4He (mass mHe ≈ 4mp, degeneracy gs = 1) via the interaction

2p + 2n ↔ 4He + γ ,

where you may assume the photons γ have zero chemical potential µγ = 0. Given that
the binding energy of helium-4 obeys BHe/c

2 ≡ 2mp + 2nn −mHe � mHe, show that the
ratio of the number densities can be written as

n2
p n

2
n

nHe
= 2

(
2πmpkT

h2

)9/2

exp(−BHe/kT ) . (†)

Explain briefly why the baryon-to-photon ratio η ≡ nB/nγ remains constant during
the expansion of the universe, where nB ≈ np + nn + 4nHe and nγ ≈ (16π/(hc)3)(kT )3.

By considering the fractional densities Xi ≡ ni/nB of the species i, re-express the
ratio (†) in the form

X2
pX

2
n

XHe
= η−3 1

32

(π
2

)3/2
(
mpc

2

kT

)9/2

exp (−BHe/kT ) .

Given that BHe ≈ 30MeV, verify (very approximately) that this ratio approaches unity
when kT ≈ 0.3MeV. In reality, helium-4 is not formed until after deuterium production
at a considerably lower temperature. Explain briefly the reason for this delay.
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4/I/10A Cosmology

The equation governing density perturbation modes δk(t) in a matter-dominated
universe (with a(t) = (t/t0)2/3) is

δ̈k + 2
ȧ

a
δ̇k −

3
2

(
ȧ

a

)2

δk = 0 ,

where k is the comoving wavevector. Find the general solution for the perturbation,
showing that there is a growing mode such that

δk(t) ≈ a(t)
a(ti)

δk(ti) (t� ti) .

Show that the physical wavelength corresponding to the comoving wavenumber k = |k|
crosses the Hubble radius cH−1 at a time tk given by

tk
t0

=
(
k0

k

)3

, where k0 =
2π

cH−1
0

.

According to inflationary theory, the amplitude of the variance at horizon-crossing is
constant, that is, 〈|δk(tk)|2〉 = AV −1/k3 where A and V (the volume) are constants.
Given this amplitude and the results obtained above, deduce that the power spectrum
today takes the form

P (k) ≡ V 〈|δk(t0)|2〉 =
A

k4
0

k .
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3/II/15A Cosmology

A spherically symmetric star with outer radius R has mass density ρ(r) and pressure
P (r), where r is the distance from the centre of the star. Show that hydrostatic equilibrium
implies the pressure support equation,

dP

dr
= −Gmρ

r2
, (†)

where m(r) is the mass inside radius r. State without proof any results you may need.

Write down an integral expression for the total gravitational potential energy Egrav

of the star. Hence use (†) to deduce the virial theorem

Egrav = −3〈P 〉V , (∗)

where 〈P 〉 is the average pressure and V is the volume of the star.

Given that a non-relativistic ideal gas obeys P = 2Ekin/3V and that an ultra-
relativistic gas obeys P = Ekin/3V , where Ekin is the kinetic energy, discuss briefly the
gravitational stability of a star in these two limits.

At zero temperature, the number density of particles obeying the Pauli exclusion
principle is given by

n =
4πgs

h3

∫ pF

0

p2dp =
4πgs

3

(pF

h

)3

,

where pF is the Fermi momentum, gs is the degeneracy and h is Planck’s constant. Deduce
that the non-relativistic internal energy Ekin of these particles is

Ekin =
4πgsV h

2

10mp

(pF

h

)5

,

where mp is the mass of a particle. Hence show that the non-relativistic Fermi degeneracy
pressure satisfies

P ∼ h2

mp
n5/3 .

Use the virial theorem (∗) to estimate that the radius R of a star supported by
Fermi degeneracy pressure is approximately

R ∼ h2M−1/3

Gm
8/3
p

,

where M is the total mass of the star.

[Hint: Assume ρ(r) = mpn(r) ∼ mp〈n〉 and note that M ≈ (4πR3/3)mp〈n〉.]
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1/II/16G Set Theory and Logic

By a directed set in a poset (P,6), we mean a nonempty subset D such that any
pair {x, y} of elements of D has an upper bound in D. We say (P,6) is directed-complete
if each directed subset D ⊆ P has a least upper bound in P . Show that a poset is complete
if and only if it is directed-complete and has joins for all its finite subsets. Show also that,
for any two sets A and B, the set [A⇁B] of partial functions from A to B, ordered by
extension, is directed-complete.

Let (P,6) be a directed-complete poset, and f : P → P an order-preserving map
which is inflationary, i.e. satisfies x 6 f(x) for all x ∈ P . We define a subset C ⊆ P to
be closed if it satisfies (x ∈ C) → (f(x) ∈ C), and is also closed under joins of directed
sets (i.e., D ⊆ C and D directed imply

∨
D ∈ C). We write x � y to mean that every

closed set containing x also contains y. Show that � is a partial order on P , and that
x � y implies x 6 y. Now consider the set H of all functions h : P → P which are
order-preserving and satisfy x� h(x) for all x. Show that H is closed under composition
of functions, and deduce that, for each x ∈ P , the set Hx = {h(x) | h ∈ H} is directed.
Defining h0(x) =

∨
Hx for each x, show that the function h0 belongs to H, and deduce

that h0(x) is the least fixed point of f lying above x, for each x ∈ P .

2/II/16G Set Theory and Logic

Explain carefully what is meant by a deduction in the propositional calculus. State
the completeness theorem for the propositional calculus, and deduce the compactness
theorem.

Let P,Q,R be three pairwise-disjoint sets of primitive propositions, and suppose
given compound propositions s ∈ L(P ∪Q) and t ∈ L(Q∪R) such that (s ` t) holds. Let
U denote the set

{u ∈ L(Q) | (s ` u)} .

If v : Q→ 2 is any valuation making all the propositions in U true, show that the set

{s} ∪ {q | q ∈ Q, v(q) = 1} ∪ {¬q | q ∈ Q, v(q) = 0}

is consistent. Deduce that U ∪ {¬t} is inconsistent, and hence show that there exists
u ∈ L(Q) such that (s ` u) and (u ` t) both hold.
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3/II/16G Set Theory and Logic

Write down the recursive definitions of ordinal addition, multiplication and expo-
nentiation. Prove carefully that ωα > α for all α, and hence show that for each non-zero
ordinal α there exists a unique α0 6 α such that

ωα0 6 α < ωα0+1 .

Deduce that any non-zero ordinal α has a unique representation of the form

ωα0 · a0 + ωα1 · α1 + · · ·+ ωαn · an

where α > α0 > α1 > · · · > αn and a0, a1, . . . , an are non-zero natural numbers.

Two ordinals β, γ are said to be commensurable if we have neither β + γ = γ nor
γ + β = β. Show that β and γ are commensurable if and only if there exists α such that
both β and γ lie in the set

{δ | ωα 6 δ < ωα+1} .

4/II/16G Set Theory and Logic

Explain what is meant by a well-founded binary relation on a set.

Given a set a, we say that a mapping f : a → Pa is recursive if, given any set b
equipped with a mapping g : Pb→ b, there exists a unique h : a→ b such that h = g◦h∗◦f ,
where h∗ : Pa → Pb denotes the mapping a′ 7→ {h(x) | x ∈ a′}. Show that f is recursive
if and only if the relation {〈x, y〉 | x ∈ f(y)} is well-founded.

[If you need to use any form of the recursion theorem, you should prove it.]
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1/II/17H Graph Theory

LetG be a connected cubic graph drawn in the plane with each edge in the boundary
of two distinct faces. Show that the associated map is 4-colourable if and only if G is 3-edge
colourable.

Is the above statement true if the plane is replaced by the torus and all faces are
required to be simply connected? Give a proof or a counterexample.

2/II/17H Graph Theory

The Ramsey number R(G) of a graph G is the smallest n such that in any red/blue
colouring of the edges of Kn there is a monochromatic copy of G.

Show that R(Kt) 6
(
2t−2
t−1

)
for every t > 3.

Let H be the graph on four vertices obtained by adding an edge to a triangle. Show
that R(H) = 7.

3/II/17H Graph Theory

Let G be a bipartite graph with vertex classes X and Y , each of size n. State and
prove Hall’s theorem giving a necessary and sufficient condition for G to contain a perfect
matching.

A vertex x ∈ X is flexible if every edge from x is contained in a perfect matching.
Show that if |Γ(A)| > |A| for every subset A of X with ∅ 6= A 6= X, then every x ∈ X is
flexible.

Show that whenever G contains a perfect matching, there is at least one flexible
x ∈ X.

Give an example of such a G where no x ∈ X of minimal degree is flexible.
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4/II/17H Graph Theory

Let G be a graph with n vertices and m edges. Show that if G contains no C4,
then m 6 n

4 (1 +
√

4n− 3).

Let C4(G) denote the number of subgraphs of G isomorphic to C4. Show that if
m > n(n−1)

4 , then G contains at least n(n−1)(n−3)
8 paths of length 2. By considering the

numbers r1, r2, . . . , r(n
2) of vertices joined to each pair of vertices of G, deduce that

C4(G) > 1
2

(
n

2

)(
(n− 3)/4

2

)
.

Now let G = G(n, 1/2) be the random graph on {1, 2, . . . , n} in which each pair of
vertices is joined independently with probability 1/2. Find the expectation E(C4(G)) of
C4(G). Deduce that if 0 < ε < 1/2, then

Pr
(
C4(G) 6 (1 + 2ε)

3
16

(
n

4

))
> ε.
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1/II/18F Galois Theory

Let L/K/M be field extensions. Define the degree [K : M ] of the field extension
K/M , and state and prove the tower law.

Now let K be a finite field. Show #K = pn, for some prime p and positive integer
n. Show also that K contains a subfield of order pm if and only if m|n.

If f ∈ K[x] is an irreducible polynomial of degree d over the finite fieldK, determine
its Galois group.

2/II/18F Galois Theory

Let L = K(ξn), where ξn is a primitive nth root of unity and G = Aut(L/K).
Prove that there is an injective group homomorphism χ : G→ (Z/nZ)∗.

Show that, if M is an intermediate subfield of K(ξn)/K, then M/K is Galois. State
carefully any results that you use.

Give an example where G is non-trivial but χ is not surjective. Show that χ is
surjective when K = Q and n is a prime.

Determine all the intermediate subfields M of Q(ξ7) and the automorphism groups
Aut(Q (ξ7)/M). Write the quadratic subfield in the form Q(

√
d) for some d ∈ Q.

3/II/18F Galois Theory

(i) Let K be the splitting field of the polynomial x4− 3 over Q. Describe the field K,
the Galois group G = Aut(K/Q), and the action of G on K.

(ii) Let K be the splitting field of the polynomial x4 + 4x2 + 2 over Q. Describe the
field K and determine Aut(K/Q).

4/II/18F Galois Theory

Let f(x) ∈ K[x] be a monic polynomial, L a splitting field for f , α1, . . . , αn the
roots of f in L. Let 4(f) =

∏
i<j(αi−αj)2 be the discriminant of f . Explain why 4(f) is

a polynomial function in the coefficients of f , and determine4(f) when f(x) = x3+px+q.

Compute the Galois group of the polynomial x3 − 3x+ 1 ∈ Q[x].
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1/II/19H Representation Theory

A finite group G has seven conjugacy classes C1 = {e}, C2, . . . , C7 and the values
of five of its irreducible characters are given in the following table.

C1 C2 C3 C4 C5 C6 C7

1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1
4 0 1 −1 2 −1 0
4 0 1 −1 −2 1 0
5 1 −1 0 1 1 −1

Calculate the number of elements in the various conjugacy classes and complete the
character table.

[You may not identify G with any known group, unless you justify doing so.]

2/II/19H Representation Theory

Let G be a finite group and let Z be its centre. Show that if ρ is a complex
irreducible representation of G, assumed to be faithful (that is, the kernel of ρ is trivial),
then Z is cyclic.

Now assume that G is a p-group (that is, the order of G is a power of the prime
p), and assume that Z is cyclic. If ρ is a faithful representation of G, show that some
irreducible component of ρ is faithful.

[You may use without proof the fact that, since G is a p-group, Z is non-trivial and any
non-trivial normal subgroup of G intersects Z non-trivially.]

Deduce that a finite p-group has a faithful irreducible representation if and only if
its centre is cyclic.
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3/II/19H Representation Theory

Let G be a finite group with a permutation action on the set X. Describe the
corresponding permutation character πX . Show that the multiplicity in πX of the principal
character 1G equals the number of orbits of G on X.

Assume that G is transitive on X, with |X| > 1. Show that G contains an element
g which is fixed-point-free on X, that is, gα 6= α for all α in X.

Assume that πX = 1G +mχ, with χ an irreducible character of G, for some natural
number m. Show that m = 1.

[You may use without proof any facts about algebraic integers, provided you state them
correctly.]

Explain how the action of G on X induces an action of G on X2. Assume that G
has r orbits on X2. If now

πX = 1G +m2χ2 + . . .+mkχk,

with 1G, χ2, . . . , χk distinct irreducible characters of G, and m2, . . . ,mk natural numbers,
show that r = 1+m2

2+. . .+m2
k. Deduce that, if r 6 5, then k = r and m2 = . . . = mk = 1.

4/II/19H Representation Theory

Write an essay on the representation theory of SU2.

Your answer should include a description of each irreducible representation and an
explanation of how to decompose arbitrary representations into a direct sum of these.
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1/II/20H Number Fields

Let K = Q(
√
−26).

(a) Show that OK = Z[
√
−26] and that the discriminant dK is equal to −104.

(b) Show that 2 ramifies in OK by showing that [2] = p2
2, and that p2 is not a principal

ideal. Show further that [3] = p3p̄3 with p3 = [3, 1 −
√
−26]. Deduce that neither

p3 nor p2
3 is a principal ideal, but p3

3 = [1−
√
−26].

(c) Show that 5 splits in OK by showing that [5] = p5p̄5, and that

NK/Q(2 +
√
−26) = 30.

Deduce that p2p3p5 has trivial class in the ideal class group of K. Conclude that
the ideal class group of K is cyclic of order six.

[You may use the fact that 2
π

√
104 ≈ 6.492.]

2/II/20H Number Fields

Let K = Q(
√

10) and put ε = 3 +
√

10.

(a) Show that 2, 3 and ε+1 are irreducible elements in OK . Deduce from the equation

6 = 2 · 3 = (ε+ 1)(ε̄+ 1)

that OK is not a principal ideal domain.

(b) Put p2 = [2, ε+ 1] and p3 = [3, ε+ 1]. Show that

[2] = p2
2 , [3] = p3p̄3 , p2p3 = [ε+ 1] , p2p̄3 = [ε− 1] .

Deduce that K has class number 2.

(c) Show that ε is the fundamental unit of K. Hence prove that all solutions in integers
x, y of the equation x2 − 10y2 = 6 are given by

x+
√

10y = ±εn(ε+ (−1)n) , n = 0, 1, 2, . . .
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4/II/20H Number Fields

Let K be a finite extension of Q and let O = OK be its ring of integers. We will
assume that O = Z[θ] for some θ ∈ O. The minimal polynomial of θ will be denoted by
g. For a prime number p let

ḡ(X) = ḡ1(X)e1 · . . . · ḡr(X)er

be the decomposition of ḡ(X) = g(X)+pZ[X] ∈ (Z/pZ)[X] into distinct irreducible monic
factors ḡi(X) ∈ (Z/pZ)[X]. Let gi(X) ∈ Z[X] be a polynomial whose reduction modulo p
is ḡi(X). Show that

pi = [p, gi(θ)] , i = 1, . . . , r ,

are the prime ideals of O containing p, that these are pairwise different, and

[p] = pe1
1 · . . . · per

r .
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1/II/21H Algebraic Topology

(i) Compute the fundamental group of the Klein bottle. Show that this group is not
abelian, for example by defining a suitable homomorphism to the symmetric group
S3.

(ii) Let X be the closed orientable surface of genus 2. How many (connected)
double coverings does X have? Show that the fundamental group of X admits
a homomorphism onto the free group on 2 generators.

2/II/21H Algebraic Topology

State the Mayer–Vietoris sequence for a simplicial complex X which is a union of
two subcomplexes A and B. Define the homomorphisms in the sequence (but do not check
that they are well-defined). Prove exactness of the sequence at the term Hi(A ∩B).

3/II/20H Algebraic Topology

Define what it means for a group G to act on a topological space X. Prove that,
if G acts freely, in a sense that you should specify, then the quotient map X → X/G is a
covering map and there is a surjective group homomorphism from the fundamental group
of X/G to G.

4/II/21H Algebraic Topology

Compute the homology of the space obtained from the torus S1×S1 by identifying
S1 × {p} to a point and S1 × {q} to a point, for two distinct points p and q in S1.
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1/II/22G Linear Analysis

Let X be a normed vector space over R. Define the dual space X∗ and show directly
that X∗ is a Banach space. Show that the map φ : X → X∗∗ defined by φ(x)v = v(x),
for all x ∈ X, v ∈ X∗, is a linear map. Using the Hahn–Banach theorem, show that φ is
injective and |φ(x)| = |x|.

Give an example of a Banach space X for which φ is not surjective. Justify your
answer.

2/II/22G Linear Analysis

Let X be a Banach space, Y a normed vector space, and T : X → Y a bounded
linear map. Assume that T (X) is of second category in Y . Show that T is surjective and
T (U) is open whenever U is open. Show that, if T is also injective, then T−1 exists and is
bounded.

Give an example of a continuous map f : R → R such that f(R) is of second
category in R but f is not surjective. Give an example of a continuous surjective map
f : R → R which does not take open sets to open sets.

3/II/21G Linear Analysis

State and prove the Arzela–Ascoli theorem.

Let N be a positive integer. Consider the subset SN ⊂ C([0, 1]) consisting of all
thrice differentiable solutions to the differential equation

f ′′ = f + (f ′)2 with |f(0)| 6 N , |f(1)| 6 N , |f ′(0)| 6 N , |f ′(1)| 6 N .

Show that this set is totally bounded as a subset of C([0, 1]).

[It may be helpful to consider interior maxima.]

4/II/22G Linear Analysis

Let X be a Banach space and T : X → X a bounded linear map. Define the
spectrum σ(T ), point spectrum σp(T ), resolvent RT (λ), and resolvent set ρ(T ). Show that
the spectrum is a closed and bounded subset of C. Is the point spectrum always closed?
Justify your answer.

Now suppose H is a Hilbert space, and T : H → H is self-adjoint. Show that the
point spectrum σp(T ) is real.
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1/II/23F Riemann Surfaces

Define a complex structure on the unit sphere S2 ⊂ R3 using stereographic
projection charts ϕ,ψ. Let U ⊂ C be an open set. Show that a continuous non-constant
map F : U → S2 is holomorphic if and only if ϕ ◦ F is a meromorphic function. Deduce
that a non-constant rational function determines a holomorphic map S2 → S2. Define
what is meant by a rational function taking the value a ∈ C∪{∞} with multiplicity m at
infinity.

Define the degree of a rational function. Show that any rational function f satisfies
(deg f) − 1 6 deg f ′ 6 2 deg f and give examples to show that the bounds are attained.
Is it true that the product f.g satisfies deg(f.g) = deg f + deg g, for any non-constant
rational functions f and g? Justify your answer.

2/II/23F Riemann Surfaces

A function ψ is defined for z ∈ C by

ψ(z) =
∞∑

n=−∞
exp

(
πi

(
n+ 1

2

)2
τ + 2πi

(
n+ 1

2

) (
z + 1

2

))
where τ is a complex parameter with Im(τ) > 0. Prove that this series converges uniformly
on the subsets {|Im(z)| 6 R} for R > 0 and deduce that ψ is holomorphic on C.

You may assume without proof that

ψ(z + 1) = −ψ(z) and ψ(z + τ) = − exp(−πiτ − 2πiz)ψ(z)

for all z ∈ C. Let `(z) be the logarithmic derivative `(z) =
ψ′(z)
ψ(z)

. Show that

`(z + 1) = `(z) and `(z + τ) = −2πi+ `(z)

for all z ∈ C. Deduce that ψ has only one zero in the parallelogram P with vertices
1
2 (±1± τ). Find all of the zeros of ψ.

Let Λ be the lattice in C generated by 1 and τ . Show that, for λj , aj ∈ C
(j = 1, . . . , n), the formula

f(z) = λ1
ψ′(z − a1)
ψ(z − a1)

+ . . .+ λn
ψ′(z − an)
ψ(z − an)

gives a Λ-periodic meromorphic function f if and only if λ1 + . . .+ λn = 0. Deduce that
d

dz

(
ψ′(z − a)
ψ(z − a)

)
is Λ-periodic.
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3/II/22F Riemann Surfaces

(i) Let R and S be compact connected Riemann surfaces and f : R→ S a non-constant
holomorphic map. Define the branching order vf (p) at p ∈ R showing that it is
well defined. Prove that the set of ramification points {p ∈ R : vf (p) > 1} is finite.
State the Riemann–Hurwitz formula.

Now suppose that R and S have the same genus g. Prove that, if g > 1, then f
is biholomorphic. In the case when g = 1, write down an example where f is not
biholomorphic.

[The inverse mapping theorem for holomorphic functions on domains in C may be
assumed without proof if accurately stated.]

(ii) Let Y be a non-singular algebraic curve in C2. Describe, without detailed proofs,
a family of charts for Y , so that the restrictions to Y of the first and second
projections C2 → C are holomorphic maps. Show that the algebraic curve

Y = {(s, t) ∈ C2 : t4 = (s2 − 1)(s− 4)}

is non-singular. Find all the ramification points of the map f : Y → C; (s, t) 7→ s.

4/II/23F Riemann Surfaces

Let R be a Riemann surface, R̃ a topological surface, and p : R̃→ R a continuous
map. Suppose that every point x ∈ R̃ admits a neighbourhood Ũ such that p maps Ũ
homeomorphically onto its image. Prove that R̃ has a complex structure such that p is a
holomorphic map.

A holomorphic map π : Y → X between Riemann surfaces is called a covering map
if every x ∈ X has a neighbourhood V with π−1(V ) a disjoint union of open sets Wk in Y ,
so that π : Wk → V is biholomorphic for each Wk. Suppose that a Riemann surface Y
admits a holomorphic covering map from the unit disc {z ∈ C : |z| < 1}. Prove that any
holomorphic map C → Y is constant.

[You may assume any form of the monodromy theorem and basic results about the lifts
of paths, provided that these are accurately stated.]

Part II 2007



49

1/II/24H Differential Geometry

Let f : X → Y be a smooth map between manifolds without boundary. Recall
that f is a submersion if dfx : TxX → Tf(x)Y is surjective for all x ∈ X. The canonical
submersion is the standard projection of Rk onto Rl for k > l, given by

(x1, . . . , xk) 7→ (x1, . . . , xl).

(i) Let f be a submersion, x ∈ X and y = f(x). Show that there exist local coordinates
around x and y such that f , in these coordinates, is the canonical submersion.
[You may assume the inverse function theorem.]

(ii) Show that submersions map open sets to open sets.

(iii) If X is compact and Y connected, show that every submersion is surjective. Are
there submersions of compact manifolds into Euclidean spaces Rk with k > 1?

2/II/24H Differential Geometry

(i) What is a minimal surface? Explain why minimal surfaces always have non-positive
Gaussian curvature.

(ii) A smooth map f : S1 → S2 between two surfaces in 3-space is said to be conformal
if

〈dfp(v1), dfp(v2)〉 = λ(p)〈v1, v2〉

for all p ∈ S1 and all v1, v2 ∈ TpS1, where λ(p) 6= 0 is a number which depends
only on p.

Let S be a surface without umbilical points. Prove that S is a minimal surface if
and only if the Gauss map N : S → S2 is conformal.

(iii) Show that isothermal coordinates exist around a non-planar point in a minimal
surface.

3/II/23H Differential Geometry

(i) Let f : X → Y be a smooth map between manifolds without boundary. Define
critical point, critical value and regular value. State Sard’s theorem.

(ii) Explain how to define the degree modulo 2 of a smooth map f , indicating clearly
the hypotheses on X and Y . Show that a smooth map with non-zero degree modulo
2 must be surjective.

(iii) Let S be the torus of revolution obtained by rotating the circle (y− 2)2 + z2 = 1 in
the yz-plane around the z-axis. Describe the critical points and the critical values
of the Gauss map N of S. Find the degree modulo 2 of N . Justify your answer by
means of a sketch or otherwise.
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4/II/24H Differential Geometry

(i) What is a geodesic? Show that geodesics are critical points of the energy functional.

(ii) Let S be a surface which admits a parametrization φ(u, v) defined on an open subset
W of R2 such that E = G = U + V and F = 0, where U = U(u) is a function of u
alone and V = V (v) is a function of v alone. Let γ : I → φ(W ) be a geodesic and
write γ(t) = φ(u(t), v(t)). Show that[

U(u(t)) + V (v(t))
][
V (v(t))u̇2 − U(u(t))v̇2

]
is independent of t.
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1/II/25J Probability and Measure

Let E be a set and E ⊆ P(E) be a set system.

(a) Explain what is meant by a π-system, a d-system and a σ-algebra.

(b) Show that E is a σ-algebra if and only if E is a π-system and a d-system.

(c) Which of the following set systems E1, E2, E3 are π-systems, d-systems or
σ-algebras? Justify your answers. (#(A) denotes the number of elements in A.)

E1 = {1, 2, . . . , 10} and E1 = {A ⊆ E1 : #(A) is even} ,
E2 = N = {1, 2, . . .} and E2 = {A ⊆ E2 : #(A) is even or #(A) = ∞} ,
E3 = R and E3 = {(a, b) : a, b ∈ R, a < b} ∪ {∅}.

(d) State and prove the theorem on the uniqueness of extension of a measure.

[You may use standard results from the lectures without proof, provided they are clearly
stated.]

2/II/25J Probability and Measure

(a) State and prove the first Borel–Cantelli lemma. State the second Borel–Cantelli
lemma.

(b) Let X1, X2, . . . be a sequence of independent random variables that converges in
probability to the limit X. Show that X is almost surely constant.

A sequence X1, X2, . . . of random variables is said to be completely convergent to X if∑
n∈N

P
(
An(ε)

)
<∞ for all ε > 0 , where An(ε) =

{
|Xn −X| > ε

}
.

(c) Show that complete convergence implies almost sure convergence.

(d) Show that, for sequences of independent random variables, almost sure convergence
also implies complete convergence.

(e) Find a sequence of (dependent) random variables that converges almost surely but
does not converge completely.
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3/II/24J Probability and Measure

Let (E, E , µ) be a finite measure space, i.e. µ(E) <∞, and let 1 6 p 6 ∞.

(a) Define the Lp-norm ‖f‖p of a measurable function f : E → R, define the space
Lp(E, E , µ) and define convergence in Lp.

In the following you may use inequalities from the lectures without proof, provided they
are clearly stated.

(b) Let f, f1, f2, . . . ∈ Lp(E, E , µ). Show that fn → f in Lp implies ‖fn‖p → ‖f‖p.

(c) Let f : E → R be a bounded measurable function with ‖f‖∞ > 0. Let

Mn =
∫

E

|f |ndµ .

Show that Mn ∈ (0,∞) and Mn+1Mn−1 > M2
n.

By using Jensen’s inequality, or otherwise, show that

µ(E)−1/n‖f‖n 6 Mn+1/Mn 6 ‖f‖∞.

Prove that lim
n→∞

Mn+1/Mn = ‖f‖∞.[
Observe that |f | > 1{

|f |>‖f‖∞−ε
}(
‖f‖∞ − ε

)
.

]

4/II/25J Probability and Measure

Let (E, E , µ) be a measure space with µ(E) <∞ and let θ : E → E be measurable.

(a) Define an invariant set A ∈ E and an invariant function f : E → R.
What is meant by saying that θ is measure-preserving?
What is meant by saying that θ is ergodic?

(b) Which of the following functions θ1 to θ4 is ergodic? Justify your answer.

On the measure space
(
[0, 1],B([0, 1]), µ

)
with Lebesgue measure µ consider

θ1(x) = 1 + x , θ2(x) = x2 , θ3(x) = 1− x .

On the discrete measure space
(
{−1, 1},P({−1, 1}), 1

2δ−1 + 1
2δ1

)
consider

θ4(x) = −x .

(c) State Birkhoff’s almost everywhere ergodic theorem.

(d) Let θ be measure-preserving and let f : E → R be bounded.

Prove that
1
n

(
f + f ◦ θ + . . .+ f ◦ θn−1

)
converges in Lp for all p ∈ [1,∞).
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1/II/26J Applied Probability

An open air rock concert is taking place in beautiful Pine Valley, and enthusiastic
fans from the entire state of Alifornia are heading there long before the much anticipated
event. The arriving cars have to be directed to one of three large (practically unlimited)
parking lots, a, b and c situated near the valley entrance. The traffic cop at the entrance
to the valley decides to direct every third car (in the order of their arrival) to a particular
lot. Thus, cars 1, 4, 7, 10 and so on are directed to lot a, cars 2, 5, 8, 11 to lot b and cars
3, 6, 9, 12 to lot c.

Suppose that the total arrival process N(t), t > 0, at the valley entrance is Poisson,
of rate λ > 0 (the initial time t = 0 is taken to be considerably ahead of the actual event).
Consider the processes Xa(t), Xb(t) and Xc(t) where Xi(t) is the number of cars arrived
in lot i by time t, i = a, b, c. Assume for simplicity that the time to reach a parking lot
from the entrance is negligible so that the car enters its specified lot at the time it crosses
the valley entrance.

(a) Give the probability density function of the time of the first arrival in each of the
processes Xa(t), Xb(t), Xc(t).

(b) Describe the distribution of the time between two subsequent arrivals in each of
these processes. Are these times independent? Justify your answer.

(c) Which of these processes are delayed renewal processes (where the distribution of
the first arrival time differs from that of the inter-arrival time)?

(d) What are the corresponding equilibrium renewal processes?

(e) Describe how the direction rule should be changed for Xa(t), Xb(t) and Xc(t)
to become Poisson processes, of rate λ/3. Will these Poisson processes be
independent? Justify your answer.
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2/II/26J Applied Probability

In this question we work with a continuous-time Markov chain where the rate of
jump i→ j may depend on j but not on i. A virus can be in one of s strains 1, . . . , s, and
it mutates to strain j with rate rj > 0 from each strain i 6= j. (Mutations are caused by
the chemical environment.) Set R = r1 + . . .+ rs.

(a) Write down the Q-matrix (the generator) of the chain (Xt) in terms of rj and R.

(b) If R = 0, that is, r1 = . . . = rs = 0, what are the communicating classes of the
chain (Xt)?

(c) From now on assume that R > 0. State and prove a necessary and sufficient
condition, in terms of the numbers rj , for the chain (Xt) to have a single
communicating class (which therefore should be closed).

(d) In general, what is the number of closed communicating classes in the chain (Xt)?
Describe all open communicating classes of (Xt).

(e) Find the equilibrium distribution of (Xt). Is the chain (Xt) reversible? Justify your
answer.

(f) Write down the transition matrix P̂ = (p̂ij) of the discrete-time jump chain for
(Xt) and identify its equilibrium distribution. Is the jump chain reversible? Justify
your answer.
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3/II/25J Applied Probability

For a discrete-time Markov chain, if the probability of transition i → j does not
depend on i then the chain is reduced to a sequence of independent random variables
(states). In this case, the chain forgets about its initial state and enters equilibrium
after a single transition. In the continuous-time case, a Markov chain whose rates qij of
transition i→ j depend on j but not on i 6= j still ‘remembers’ its initial state and reaches
equilibrium only in the limit as the time grows indefinitely. This question is an illustration
of this property.

A protean sea sponge may change its colour among s varieties 1, . . . , s, under the
influence of the environment. The rate of transition from colour i to j equals rj > 0 and
does not depend on i, i 6= j. Consider a Q-matrix Q = (qij) with entries

qij =
{
rj , i 6= j,
−R+ ri, i = j,

where R = r1 + . . .+ rs. Assume that R > 0 and let (Xt) be the continuous-time Markov
chain with generator Q. Given t > 0, let P (t) = (pij(t)) be the matrix of transition
probabilities in time t in chain (Xt).

(a) State the exponential relation between the matrices Q and P (t).

(b) Set πj = rj/R, j = 1, . . . , s. Check that π1, . . ., πs are equilibrium probabilities for
the chain (Xt). Is this a unique equilibrium distribution? What property of the
vector with entries πj relative to the matrix Q is involved here?

(c) Let x be a vector with components x1, . . . , xs such that x1 + . . . + xs = 0. Show
that xTQ = −RxT. Compute xTP (t).

(d) Now let δi denote the (column) vector whose entries are 0 except for the ith
one which equals 1. Observe that the ith row of P (t) is δTi P (t). Prove that
δTi P (t) = πT + e−tR(δTi − πT).

(e) Deduce the expression for transition probabilities pij(t) in terms of rates rj and
their sum R.
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4/II/26J Applied Probability

A population of rare Monarch butterflies functions as follows. At the times of a
Poisson process of rate λ a caterpillar is produced from an egg. After an exponential time,
the caterpillar is transformed into a pupa which, after an exponential time, becomes a
butterfly. The butterfly lives for another exponential time and then dies. (The Poissonian
assumption reflects the fact that butterflies lay a huge number of eggs most of which do
not develop.) Suppose that all lifetimes are independent (of the arrival process and of each
other) and let their rate be µ. Assume that the population is in an equilibrium and let C
be the number of caterpillars, R the number of pupae and B the number of butterflies (so
that the total number of insects, in any metamorphic form, equals N = C +R+B). Let
π(c,r,b) be the equilibrium probability P(C = c,R = r,B = b) where c, r, b = 0, 1, . . ..

(a) Specify the rates of transitions (c, r, b) → (c′, r′, b′) for the resulting continuous-time
Markov chain (Xt) with states (c, r, b). (The rates are non-zero only when c′ = c
or c′ = c± 1 and similarly for other co-ordinates.) Check that the holding rate for
state (c, r, b) is λ+ µn where n = c+ r + b.

(b) Let Q be the Q-matrix from (a). Consider the invariance equation πQ = 0. Verify
that the only solution is

π(c,r,b) =
(3λ/µ)n

3nc!r!b!
exp

(
−3λ
µ

)
, n = c+ r + b.

(c) Derive the marginal equilibrium probabilities P(N = n) and the conditional
equilibrium probabilities P(C = c, R = r, B = b | N = n).

(d) Determine whether the chain (Xt) is positive recurrent, null-recurrent or transient.

(e) Verify that the equilibrium probabilities P(N = n) are the same as in the
corresponding M/GI/∞ system (with the correct specification of the arrival rate
and the service-time distribution).
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1/II/27I Principles of Statistics

Suppose that X has density f(·|θ) where θ ∈ Θ. What does it mean to say that
statistic T ≡ T (X) is sufficient for θ?

Suppose that θ = (ψ, λ), where ψ is the parameter of interest, and λ is a nuisance
parameter, and that the sufficient statistic T has the form T = (C,S). What does it
mean to say that the statistic S is ancillary? If it is, how (according to the conditionality
principle) do we test hypotheses on ψ? Assuming that the set of possible values for X
is discrete, show that S is ancillary if and only if the density (probability mass function)
f(x|ψ, λ) factorises as

f(x|ψ, λ) = ϕ0(x) ϕC(C(x), S(x), ψ) ϕS(S(x), λ) (∗)

for some functions ϕ0, ϕC , and ϕS with the properties∑
x∈C−1(c)∩S−1(s)

ϕ0(x) = 1 =
∑

s

ϕS(s, λ) =
∑

s

∑
c

ϕC(c, s, ψ)

for all c, s, ψ, and λ.

Suppose now that X1, . . . , Xn are independent observations from a Γ(a, b) distri-
bution, with density

f(x|a, b) = (bx)a−1e−bxbI{x>0}/Γ(a).

Assuming that the criterion (∗) holds also for observations which are not discrete, show
that it is not possible to find (C(X), S(X)) sufficient for (a, b) such that S is ancillary
when b is regarded as a nuisance parameter, and a is the parameter of interest.
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2/II/27I Principles of Statistics

(i) State Wilks’ likelihood ratio test of the null hypothesis H0 : θ ∈ Θ0 against the
alternative H1 : θ ∈ Θ1, where Θ0 ⊂ Θ1. Explain when this test may be used.

(ii) Independent identically-distributed observations X1, . . . , Xn take values in the set
S = {1, . . . ,K}, with common distribution which under the null hypothesis is of
the form

P (X1 = k|θ) = f(k|θ) (k ∈ S)

for some θ ∈ Θ0, where Θ0 is an open subset of some Euclidean space Rd,
d < K − 1. Under the alternative hypothesis, the probability mass function of
the Xi is unrestricted.

Assuming sufficient regularity conditions on f to guarantee the existence and
uniqueness of a maximum-likelihood estimator θ̂n(X1, . . . , Xn) of θ for each n,
show that for large n the Wilks’ likelihood ratio test statistic is approximately of
the form

K∑
j=1

(Nj − nπ̂j)2/Nj ,

where Nj =
∑n

i=1 I{Xi=j}, and π̂j = f(j|θ̂n). What is the asymptotic distribution
of this statistic?

3/II/26I Principles of Statistics

(i) In the context of decision theory, what is a Bayes rule with respect to a given loss
function and prior? What is an extended Bayes rule?

Characterise the Bayes rule with respect to a given prior in terms of the posterior
distribution for the parameter given the observation. When Θ = A = Rd for some
d, and the loss function is L(θ, a) = ‖θ − a‖2, what is the Bayes rule?

(ii) Suppose that A = Θ = R, with loss function L(θ, a) = (θ−a)2 and suppose further
that under Pθ, X ∼ N(θ, 1).

Supposing that a N(0, τ−1) prior is taken over θ, compute the Bayes risk of the
decision rule dλ(X) = λX. Find the posterior distribution of θ given X, and
confirm that its mean is of the form dλ(X) for some value of λ which you should
identify. Hence show that the decision rule d1 is an extended Bayes rule.
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4/II/27I Principles of Statistics

Assuming sufficient regularity conditions on the likelihood f(x|θ) for a univariate
parameter θ ∈ Θ, establish the Cramér–Rao lower bound for the variance of an unbiased
estimator of θ.

If θ̂(X) is an unbiased estimator of θ whose variance attains the Cramér–Rao lower
bound for every value of θ ∈ Θ, show that the likelihood function is an exponential family.
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1/II/28J Stochastic Financial Models

(i) What does it mean to say that a process (Mt)t>0 is a martingale? What does the
martingale convergence theorem tell us when applied to positive martingales?

(ii) What does it mean to say that a process (Bt)t>0 is a Brownian motion? Show that
supt>0Bt = ∞ with probability one.

(iii) Suppose that (Bt)t>0 is a Brownian motion. Find µ such that

St = exp (x0 + σBt + µt)

is a martingale. Discuss the limiting behaviour of St and E (St) for this µ as t→∞ .

2/II/28J Stochastic Financial Models

In the context of a single-period financial market with n traded assets, what is an
arbitrage? What is an equivalent martingale measure?

Fix ε ∈ (0, 1) and consider the following single-period market with 3 assets:

Asset 1 is a riskless bond and pays no interest.

Asset 2 is a stock with initial price £1 per share; its possible final prices are u = 1+ε
with probability 3/5 and d = 1− ε with probability 2/5 .

Asset 3 is another stock that behaves like an independent copy of asset 2.

Find all equivalent martingale measures for the problem and characterise all contingent
claims that can be replicated.

Consider a contingent claim Y that pays 1 if both risky assets move in the same
direction and zero otherwise. Show that the lower arbitrage bound, simply obtained by
calculating all possible prices as the pricing measure ranges over all equivalent martingale
measures, is zero. Why might someone pay for such a contract?
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3/II/27J Stochastic Financial Models

Suppose that over two periods a stock price moves on a binomial tree

15

30

12

45

36

16

10

(i) Determine for what values of the riskless rate r there is no arbitrage. From here
on, fix r = 1/4 and determine the equivalent martingale measure.

(ii) Find the time-zero price and replicating portfolio for a European put option with
strike 15 and expiry 2.

(iii) Find the time-zero price and optimal exercise policy for an American put option
with the same strike and expiry.

(iv) Deduce the corresponding (European and American) call option prices for the same
strike and expiry.

4/II/28J Stochastic Financial Models

Briefly describe the Black–Scholes model. Consider a “cash-or-nothing” option with
strike price K , i.e. an option whose payoff at maturity is

f (ST ) =
{

1 if ST > K ,
0 if ST 6 K .

It can be interpreted as a bet that the stock will be worth at least K at time T . Find
a formula for its value at time t, in terms of the spot price St . Find a formula for its
Delta (i.e. its hedge ratio). How does the Delta behave as t→ T ? Why is it difficult, in
practice, to hedge such an instrument?
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2/II/29I Optimization and Control

State Pontryagin’s maximum principle in the case where both the terminal time
and the terminal state are given.

Show that π is the minimum value taken by the integral

1
2

∫ 1

0

(u2
t + v2

t ) dt

subject to the constraints x0 = y0 = z0 = x1 = y1 = 0 and z1 = 1, where

ẋt = ut, ẏt = vt, żt = utyt − vtxt, 0 6 t 6 1.

[You may find it useful to note the fact that the problem is rotationally symmetric about
the z-axis, so that the angle made by the initial velocity (ẋ0, ẏ0) with the positive x-axis
may be chosen arbitrarily.]

3/II/28I Optimization and Control

Let P be a discrete-time controllable dynamical system (or Markov decision process)
with countable state-space S and action-space A. Consider the n-horizon dynamic
optimization problem with instantaneous costs c(k, x, a), on choosing action a in state
x at time k 6 n− 1, with terminal cost C(x), in state x at time n. Explain what is meant
by a Markov control and how the choice of a control gives rise to a time-inhomogeneous
Markov chain.

Suppose we can find a bounded function V and a Markov control u∗ such that

V (k, x) 6 (c+ PV )(k, x, a), 0 6 k 6 n− 1, x ∈ S, a ∈ A,

with equality when a = u∗(k, x), and such that V (n, x) = C(x) for all x. Here PV (k, x, a)
denotes the expected value of V (k+ 1, Xk+1), given that we choose action a in state x at
time k. Show that u∗ is an optimal Markov control.

A well-shuffled pack of cards is placed face-down on the table. The cards are turned
over one by one until none are left. Exactly once you may place a bet of £1000 on the
event that the next two cards will be red. How should you choose the moment to bet?
Justify your answer.
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4/II/29I Optimization and Control

Consider the scalar controllable linear system, whose state Xn evolves by

Xn+1 = Xn + Un + εn+1,

with observations Yn given by
Yn+1 = Xn + ηn+1.

Here, Un is the control variable, which is to be determined on the basis of the observations
up to time n, and εn, ηn are independent N(0, 1) random variables. You wish to minimize
the long-run average expected cost, where the instantaneous cost at time n is X2

n + U2
n.

You may assume that the optimal control in equilibrium has the form Un = −KX̂n, where
X̂n is given by a recursion of the form

X̂n+1 = X̂n + Un +H(Yn+1 − X̂n),

and where H is chosen so that ∆n = Xn − X̂n is independent of the observations up
to time n. Show that K = H = (

√
5 − 1)/2 = 2/(

√
5 + 1), and determine the minimal

long-run average expected cost. You are not expected to simplify the arithmetic form of
your answer but should show clearly how you have obtained it.
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1/II/29A Partial Differential Equations

(i) Consider the problem of solving the equation

n∑
j=1

aj(x)
∂u

∂xj
= b(x, u)

for a C1 function u = u(x) = u(x1, . . . , xn), with data specified on a C1

hypersurface S ⊂ Rn

u(x) = φ(x), ∀x ∈ S.

Assume that a1, . . . , an, φ, b are C1 functions. Define the characteristic curves and
explain what it means for the non-characteristic condition to hold at a point on S.
State a local existence and uniqueness theorem for the problem.

(ii) Consider the case n = 2 and the equation

∂u

∂x1
− ∂u

∂x2
= x2u

with data u(x1, 0) = φ(x1, 0) = f(x1) specified on the axis {x ∈ R2 : x2 = 0}.
Obtain a formula for the solution.

(iii) Consider next the case n = 2 and the equation

∂u

∂x1
− ∂u

∂x2
= 0

with data u(g(s)) = φ(g(s)) = f(s) specified on the hypersurface S, which is given
parametrically as S ≡ {x ∈ R2 : x = g(s)} where g : R → R2 is defined by

g(s) = (s, 0), s < 0,

g(s) = (s, s2), s > 0.

Find the solution u and show that it is a global solution. (Here “global” means u
is C1 on all of R2.)

(iv) Consider next the equation
∂u

∂x1
+

∂u

∂x2
= 0

to be solved with the same data given on the same hypersurface as in (iii). Explain,
with reference to the characteristic curves, why there is generally no global C1

solution. Discuss the existence of local solutions defined in some neighbourhood of
a given point y ∈ S for various y. [You need not give formulae for the solutions.]
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2/II/30A Partial Differential Equations

Define (i) the Fourier transform of a tempered distribution T ∈ S ′(R3), and
(ii) the convolution T ∗ g of a tempered distribution T ∈ S ′(R3) and a Schwartz function
g ∈ S(R3). Give a formula for the Fourier transform of T ∗ g (“convolution theorem”).

Let t > 0. Compute the Fourier transform of the tempered distribution At ∈ S ′(R3)
defined by

〈At, φ〉 =
∫
‖y‖=t

φ(y)dΣ(y), ∀φ ∈ S(R3),

and deduce the Kirchhoff formula for the solution u(t, x) of

∂2u

∂t2
−∆u = 0,

u(0, x) = 0,
∂u

∂t
(0, x) = g(x), g ∈ S(R3) .

Prove, by consideration of the quantities e = 1
2 (u2

t + |∇u|2) and p = −ut∇u, that any C2

solution is also given by the Kirchhoff formula (uniqueness).

Prove a corresponding uniqueness statement for the initial value problem

∂2w

∂t2
−∆w + V (x)w = 0,

w(0, x) = 0,
∂w

∂t
(0, x) = g(x), g ∈ S(R3)

where V is a smooth positive real-valued function of x ∈ R3 only.
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3/II/29A Partial Differential Equations

Write down the formula for the solution u = u(t, x) for t > 0 of the initial value
problem for the heat equation in one space dimension

∂u

∂t
− ∂2u

∂x2
= 0 ,

u(0, x) = g(x) ,

for g : R → C a given smooth bounded function.

Define the distributional derivative of a tempered distribution T ∈ S ′(R). Define a
fundamental solution of a constant-coefficient linear differential operator P , and show that
the distribution defined by the function 1

2e
−|x| is a fundamental solution for the operator

P = − d2

dx2
+ 1.

For the equation
∂u

∂t
− ∂2u

∂x2
= etφ(x), (∗)

where φ ∈ S(R), prove that there is a unique solution of the form etv(x) with v ∈ S(R).
Hence write down the solution of (∗) with general initial data u(0, x) = f(x) and describe
the large time behaviour.

4/II/30A Partial Differential Equations

State and prove the mean value property for harmonic functions on R3.

Obtain a generalization of the mean value property for sub-harmonic functions on
R3, i.e. C2 functions for which

−∆u(x) 6 0

for all x ∈ R3.

Let φ ∈ C2(R3; C) solve the equation

−∆φ+ iV (x)φ = 0 ,

where V is a real-valued continuous function. By considering the function w(x) = |φ(x)|2
show that, on any ball B(y,R) = {x : ‖x− y‖ < R} ⊂ R3,

sup
x∈B(y,R)

|φ(x)| 6 sup
‖x−y‖=R

|φ(x)|.
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1/II/30B Asymptotic Methods

State Watson’s lemma, describing the asymptotic behaviour of the integral

I(λ) =
∫ A

0

e−λtf(t)dt, A > 0,

as λ→∞, given that f(t) has the asymptotic expansion

f(t) ∼ tα
∞∑

n=0

an t
nβ

as t→ 0+, where β > 0 and α > −1.

Give an account of Laplace’s method for finding asymptotic expansions of integrals
of the form

J(z) =
∫ ∞

−∞
e−zp(t) q(t) dt

for large real z, where p(t) is real for real t.

Deduce the following asymptotic expansion of the contour integral∫ ∞+iπ

−∞−iπ

exp (z cosh t) dt = 21/2iez Γ
(

1
2

) [
z−1/2 + 1

8 z
−3/2 +O

(
z−5/2

)]
as z →∞.

3/II/30B Asymptotic Methods

Explain the method of stationary phase for determining the behaviour of the
integral

I(x) =
∫ b

a

du eixf(u)

for large x. Here, the function f(u) is real and differentiable, and a, b and x are all real.

Apply this method to show that the first term in the asymptotic behaviour of the
function

Γ(m+ 1) =
∫ ∞

0

du um e−u ,

where m = i n with n > 0 and real, is

Γ(i n+ 1) ∼
√

2π e−i n exp
[(
i n+ 1

2

) (
iπ

2
+ log n

)]
as n→∞.
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4/II/31B Asymptotic Methods

Consider the time-independent Schrödinger equation

d2ψ

dx2
+ λ2q(x)ψ(x) = 0,

where λ� 1 denotes ~−1 and q(x) denotes 2m[E − V (x)]. Suppose that

q(x) > 0 for a < x < b,

and q(x) < 0 for −∞ < x < a and b < x <∞

and consider a bound state ψ(x). Write down the possible Liouville–Green approximate
solutions for ψ(x) in each region, given that ψ → 0 as |x| → ∞.

Assume that q(x) may be approximated by q′(a)(x−a) near x = a, where q′(a) > 0,
and by q′(b)(x− b) near x = b, where q′(b) < 0. The Airy function Ai(z) satisfies

d2(Ai)
dz2

− z(Ai) = 0

and has the asymptotic expansions

Ai(z) ∼ 1
2π

−1/2z−1/4 exp
(
−2

3
z3/2

)
as z → +∞ ,

and

Ai(z) ∼ π−1/2|z|−1/4 cos
[(

2
3
|z|3/2

)
− π

4

]
as z → −∞ .

Deduce that the energies E of bound states are given approximately by the WKB
condition:

λ

∫ b

a

q1/2(x) dx =
(
n+ 1

2

)
π (n = 0, 1, 2, . . .).
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1/II/31E Integrable Systems

(i) Using the Cole–Hopf transformation

u = −2ν
φ

∂φ

∂x
,

map the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

to the heat equation
∂φ

∂t
= ν

∂2φ

∂x2
.

(ii) Given that the solution of the heat equation on the infinite line R with initial
condition φ(x, 0) = Φ(x) is given by

φ(x, t) =
1√

4πνt

∫ ∞

−∞
Φ(ξ) e−

(x−ξ)2

4νt dξ ,

show that the solution of the analogous problem for the Burgers equation with
initial condition u(x, 0) = U(x) is given by

u =

∫ ∞

−∞

x− ξ

t
e−

1
2ν G(x,ξ,t) dξ∫ ∞

−∞
e−

1
2ν G(x,ξ,t) dξ

,

where the function G is to be determined in terms of U .

(iii) Determine the ODE characterising the scaling reduction of the spherical modified
Korteweg – de Vries equation

∂u

∂t
+ 6u2 ∂u

∂x
+
∂3u

∂x3
+
u

t
= 0 .

2/II/31E Integrable Systems

Solve the following linear singular equation

(
t+ t−1

)
φ(t) +

(
t− t−1

)
πi

−
∫

C

φ(τ)
τ − t

dτ −
(
t+ t−1

)
2πi

∮
C

(
τ + 2τ−1

)
φ(τ) dτ = 2t−1 ,

where C denotes the unit circle, t ∈ C and −
∫

C

denotes the principal value integral.
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3/II/31E Integrable Systems

Find a Lax pair formulation for the linearised NLS equation

iqt + qxx = 0 .

Use this Lax pair formulation to show that the initial value problem on the infinite
line of the linearised NLS equation is associated with the following Riemann–Hilbert
problem

M+(x, t, k) = M−(x, t, k)
(

1 eikx−ik2tq̂0(k)
0 1

)
, k ∈ R ,

M =
(

1 0
0 1

)
+O

(
1
k

)
, k →∞ .

By deforming the above problem obtain the Riemann–Hilbert problem and hence
the linear integral equation associated with the following system of nonlinear evolution
PDEs

iqt + qxx − 2ϑq2 = 0 ,

−iϑt + ϑxx − 2ϑ2q = 0 .
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1/II/32D Principles of Quantum Mechanics

A particle in one dimension has position and momentum operators x̂ and p̂ whose
eigenstates obey

〈x|x′〉 = δ(x−x′) , 〈p|p′〉 = δ(p−p′) , 〈x|p〉 = (2π~)−1/2eixp/~ .

Given a state |ψ〉, define the corresponding position-space and momentum-space wave-
functions ψ(x) and ψ̃(p) and show how each of these can be expressed in terms of the
other. Derive the form taken in momentum space by the time-independent Schrödinger
equation ( p̂2

2m
+ V (x̂)

)
|ψ〉 = E|ψ〉

for a general potential V .

Now let V (x) = −(~2λ/m)δ(x) with λ a positive constant. Show that the
Schrödinger equation can be written

( p2

2m
− E

)
ψ̃(p) =

~λ
2πm

∫ ∞

−∞
dp′ ψ̃(p′)

and verify that it has a solution ψ̃(p) = N/(p2 + α2) for unique choices of α and E, to be
determined (you need not find the normalisation constant, N). Check that this momentum
space wavefunction can also be obtained from the position space solution ψ(x) =

√
λe−λ|x|.

2/II/32D Principles of Quantum Mechanics

Let |sm〉 denote the combined spin eigenstates for a system of two particles, each
with spin 1. Derive expressions for all states with m = s in terms of product states.

Given that the particles are identical, and that the spatial wavefunction describing
their relative position has definite orbital angular momentum `, show that ` + s must
be even. Suppose that this two-particle state is known to arise from the decay of a
single particle, X, also of spin 1. Assuming that total angular momentum and parity are
conserved in this process, find the values of ` and s that are allowed, depending on whether
the intrinsic parity of X is even or odd.

[You may set ~ = 1 and use J±| j m 〉 =
√

(j ∓m)(j ±m+ 1) | j m±1 〉. ]
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3/II/32D Principles of Quantum Mechanics

Let

x̂ =
( ~

2mω

)1/2

(a+ a†) , p̂ =
(~mω

2

)1/2

i(a† − a)

be the position and momentum operators for a one-dimensional harmonic oscillator of
mass m and frequency ω. Write down the commutation relations obeyed by a and a† and
give an expression for the oscillator Hamiltonian H(x̂, p̂) in terms of them. Prove that the
only energies allowed are En = ~ω(n + 1

2 ) with n = 0, 1, 2, . . . and give, without proof, a
formula for a general normalised eigenstate |n〉 in terms of |0〉.

A three-dimensional oscillator with charge is subjected to a weak electric field so
that its total Hamiltonian is

H1 + H2 + H3 + λmω2( x̂1x̂2 + x̂2x̂3 + x̂3x̂1 )

where Hi = H(x̂i, p̂i) for i = 1, 2, 3 and λ is a small, dimensionless parameter. Express the
general eigenstate for the Hamiltonian with λ = 0 in terms of one-dimensional oscillator
states, and give the corresponding energy eigenvalue. Use perturbation theory to compute
the changes in energies of states in the lowest two levels when λ 6= 0, working to the
leading order at which non-vanishing corrections occur.

Part II 2007



73

4/II/32D Principles of Quantum Mechanics

The Hamiltonian for a particle of spin 1
2 in a magnetic field B is

H = −1
2

~γB · σ where σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

and γ is a constant (the motion of the particle in space can be ignored). Consider a
magnetic field which is independent of time. Writing B = Bn, where n is a unit vector,
calculate the time evolution operator and show that if the particle is initially in a state
|χ〉 the probability of measuring it to be in an orthogonal state |χ′〉 after a time t is

| 〈χ′|n · σ|χ〉 |2 sin2 γBt

2
.

Evaluate this to find the probability for a transition from a state of spin up along the z
direction to one of spin down along the z direction when B = (Bx, 0, Bz).

Now consider a magnetic field whose x and y components are time-dependent but
small:

B = (A cosαt, A sinαt, Bz ) .

Show that the probability for a transition from a spin-up state at time zero to a spin-down
state at time t (with spin measured along the z direction, as before) is approximately

( γA

γBz+α

)2

sin2 (γBz+α)t
2

,

where you may assume |A| << |Bz +αγ−1| . Comment on how this compares, when α = 0,
with the result for a time-independent field.

[The first-order transition amplitude due to a perturbation V (t) is

− i

~

∫ t

0

dt′ei(E′−E)t′/~〈χ′|V (t′)|χ〉

where |χ〉 and |χ′〉 are orthogonal eigenstates of the unperturbed Hamiltonian with
eigenvalues E and E′ respectively. ]
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1/II/33A Applications of Quantum Mechanics

In a certain spherically symmetric potential, the radial wavefunction for particle
scattering in the l = 0 sector (S-wave), for wavenumber k and r � 0, is

R(r, k) =
A

kr

(
g(−k)e−ikr − g(k)eikr

)
where

g(k) =
k + iκ

k − iα

with κ and α real, positive constants. Scattering in sectors with l 6= 0 can be neglected.
Deduce the formula for the S-matrix in this case and show that it satisfies the expected
symmetry and reality properties. Show that the phase shift is

δ(k) = tan−1 k(κ+ α)
k2 − κα

.

What is the scattering length for this potential?

From the form of the radial wavefunction, deduce the energies of the bound states,
if any, in this system. If you were given only the S-matrix as a function of k, and no other
information, would you reach the same conclusion? Are there any resonances here?

[Hint: Recall that S(k) = e2iδ(k) for real k, where δ(k) is the phase shift.]

2/II/33A Applications of Quantum Mechanics

Describe the variational method for estimating the ground state energy of a
quantum system. Prove that an error of order ε in the wavefunction leads to an error
of order ε2 in the energy.

Explain how the variational method can be generalized to give an estimate of the
energy of the first excited state of a quantum system.

Using the variational method, estimate the energy of the first excited state of the
anharmonic oscillator with Hamiltonian

H = − d2

dx2
+ x2 + x4 .

How might you improve your estimate?

[Hint: If I2n =
∫∞
−∞ x2n e−ax2

dx then

I0 =
√
π

a
, I2 =

√
π

a

1
2a
, I4 =

√
π

a

3
4a2

, I6 =
√
π

a

15
8a3

.

]
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3/II/33A Applications of Quantum Mechanics

Consider the Hamiltonian
H = B(t) · S

for a particle of spin 1
2 fixed in space, in a rotating magnetic field, where

S1 =
~
2

(
0 1
1 0

)
, S2 =

~
2

(
0 −i
i 0

)
, S3 =

~
2

(
1 0
0 −1

)
and

B(t) = B(sinα cosωt, sinα sinωt, cosα)

with B, α and ω constant, and B > 0, ω > 0.

There is an exact solution of the time-dependent Schrödinger equation for this
Hamiltonian,

χ(t) =
(

cos
(

1
2λt

)
− i

B − ω cosα
λ

sin
(

1
2λt

))
e−iωt/2 χ+ + i

(ω
λ

sinα sin
(

1
2λt

))
eiωt/2 χ−

where λ ≡ (ω2 − 2ωB cosα+B2)1/2 and

χ+ =
(

cos α
2

eiωt sin α
2

)
, χ− =

(
e−iωt sin α

2

− cos α
2

)
.

Show that, for ω � B, this exact solution simplifies to a form consistent with the adiabatic
approximation. Find the dynamic phase and the geometric phase in the adiabatic regime.
What is the Berry phase for one complete cycle of B?

The Berry phase can be calculated as an integral of the form

Γ = i

∮
〈ψ|∇Rψ〉 · dR .

Evaluate Γ for the adiabatic evolution described above.

Part II 2007



76

4/II/33A Applications of Quantum Mechanics

Consider a 1-dimensional chain of 2N atoms of mass m (with N large and with
periodic boundary conditions). The interactions between neighbouring atoms are modelled
by springs with alternating spring constants K and G, with K > G.

K G K G K G

m m m m m

In equilibrium, the separation of the atoms is a, the natural length of the springs.

Find the frequencies of the longitudinal modes of vibration for this system, and show
that they are labelled by a wavenumber q that is restricted to a Brillouin zone. Identify the
acoustic and optical bands of the vibration spectrum, and determine approximations for
the frequencies near the centre of the Brillouin zone. What is the frequency gap between
the acoustic and optical bands at the zone boundary?

Describe briefly the properties of the phonons in this system.
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2/II/34D Statistical Physics

Derive the Maxwell relation(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

.

The diagram below illustrates the Joule–Thomson throttling process for a porous
barrier. A gas of volume V1, initially on the left-hand side of a thermally insulated pipe,
is forced by a piston to go through the barrier using constant pressure p1. As a result the
gas flows to the right-hand side, resisted by a piston which applies a constant pressure p2

(with p2 < p1). Eventually all of the gas occupies a volume V2 on the right-hand side.
Show that this process conserves enthalpy.

The Joule–Thomson coefficient µJT is the change in temperature with respect to
a change in pressure during a process that conserves enthalpy H. Express the Joule–

Thomson coefficient, µJT ≡
(
∂T

∂p

)
H

, in terms of T , V , the heat capacity at constant

pressure Cp, and the volume coefficient of expansion α ≡ 1
V

(
∂V

∂T

)
p

.

What is µJT for an ideal gas?

If one wishes to use the Joule–Thomson process to cool a real (non-ideal) gas, what
must the sign of µJT be?

Before

p1 V1
p2

After

p1 V2
p2

Key: insulated pipe

porous barrier

sliding pistons
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3/II/34D Statistical Physics

For a 2-dimensional gas of N nonrelativistic, non-interacting, spinless bosons,
find the density of states g(ε) in the neighbourhood of energy ε. [Hint: consider the gas in
a box of size L×L which has periodic boundary conditions. Work in the thermodynamic
limit N →∞, L→∞, with N/L2 held finite.]

Calculate the number of particles per unit area at a given temperature and chemical
potential.

Explain why Bose–Einstein condensation does not occur in this gas at any temper-
ature.

[Recall that

1
Γ(n)

∫ ∞

0

xn−1dx

z−1ex − 1
=

∞∑
`=1

z`

`n
.

]

4/II/34D Statistical Physics

Consider a classical gas of diatomic molecules whose orientation is fixed by a strong
magnetic field. The molecules are not free to rotate, but they are free to vibrate. Assuming
that the vibrations are approximately harmonic, calculate the contribution to the partition
function due to vibrations.

Evaluate the free energy F = −kT lnZ, where Z is the total partition function for
the gas, and hence calculate the entropy.

[Note that
∫∞
−∞ exp(−au2)du =

√
π/a and

∫∞
0
u2 exp(−au2)du =

√
π/4a3/2. You may

approximate lnN ! by N lnN −N .]

Part II 2007



79

1/II/34E Electrodynamics

Frame S ′ is moving with uniform speed v in the z-direction relative to a laboratory
frame S. Using Cartesian coordinates and units such that c = 1, the relevant Lorentz
transformation is

t′ = γ(t− vz), x′ = x, y′ = y, z′ = γ(z − vt) ,

where γ = 1/
√

1− v2. A straight thin wire of infinite extent lies along the z-axis and
carries charge and current line densities σ and J per unit length, as measured in S.
Stating carefully your assumptions show that the corresponding quantities in S ′ are given
by

σ′ = γ(σ − vJ), J ′ = γ(J − vσ) .

Using cylindrical polar coordinates, and the integral forms of the Maxwell equations
∇ ·E = µ0ρ and ∇×B = µ0j, derive the electric and magnetic fields outside the wire in
both frames.

In a standard notation the Lorentz transformation for the electric and magnetic
fields is

E‖
′ = E‖, B‖

′ = B‖, E⊥
′ = γ(E⊥ + v ×B⊥), B⊥

′ = γ(B⊥ − v ×E⊥).

Is your result consistent with this?
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3/II/35E Electrodynamics

Consider a particle of charge q moving with 3-velocity v. If the particle is moving
slowly then Larmor’s formula asserts that the instantaneous radiated power is

P =
µ0

6π
q2

∣∣∣∣dvdt
∣∣∣∣2 .

Suppose, however, that the particle is moving relativistically. Give reasons why
one should conclude that P is a Lorentz invariant. Writing the 4-velocity as Ua = (γ, γv)
where γ = 1/

√
1− |v|2 and c = 1, show that

U̇a = (γ3α, γ3αv + γv̇)

where α = v · v̇ and ḟ = df/ds where s is the particle’s proper time. Show also that

U̇aU̇a = −γ4α2 − γ2|v̇|2.

Deduce the relativistic version of Larmor’s formula.

Suppose the particle moves in a circular orbit perpendicular to a uniform magnetic
field B. Show that

P =
µ0

6π
q4

m2
(γ2 − 1)|B|2,

where m is the mass of the particle, and comment briefly on the slow motion limit.

4/II/35E Electrodynamics

An action
S[ϕ] =

∫
d4xL(ϕ,ϕ,a)

is given, where ϕ(x) is a scalar field. Explain heuristically how to compute the functional
derivative δS/δϕ.

Consider the action for electromagnetism,

S[Aa] = −
∫

d4x

{
1

4µ0
F abFab + JaAa

}
.

Here Ja is the 4-current density, Aa is the 4-potential and Fab = Ab,a−Aa,b is the Maxwell
field tensor. Obtain Maxwell’s equations in 4-vector form.

Another action that is sometimes suggested is

Ŝ[Aa] = −
∫

d4x

{
1

2µ0
Aa,bAa,b + JaAa

}
.

Under which additional assumption can Maxwell’s equations be obtained using this action?

Using this additional assumption establish the relationship between the actions S
and Ŝ.
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1/II/35A General Relativity

Starting from the Riemann tensor for a metric gab, define the Ricci tensor Rab and
the scalar curvature R.

The Riemann tensor obeys

∇eRabcd +∇cRabde +∇dRabec = 0 .

Deduce that
∇aRab = 1

2∇bR . (∗)

Write down Einstein’s field equations in the presence of a matter source, with energy-
momentum tensor Tab. How is the relation (∗) important for the consistency of Einstein’s
equations?

Show that, for a scalar function φ, one has

∇2∇aφ = ∇a∇2φ+Rab∇bφ .

Assume that
Rab = ∇a∇bφ

for a scalar field φ. Show that the quantity

R+∇aφ∇aφ

is then a constant.

Part II 2007



82

2/II/35A General Relativity

The symbol ∇a denotes the covariant derivative defined by the Christoffel connec-
tion Γa

bc for a metric gab. Explain briefly why

(∇a∇b −∇b∇a)φ = 0,
(∇a∇b −∇b∇a)vc 6= 0,

in general, where φ is a scalar field and vc is a covariant vector field.

A Killing vector field va satisfies the equation

Sab ≡ ∇avb +∇bva = 0 .

By considering the quantity ∇aSbc +∇bSac −∇cSab , show that

∇a∇bvc = −Rd
abcvd .

Find all Killing vector fields va in the case of flat Minkowski space-time.

For a metric of the form

ds2 = −f(x) dt2 + gij(x) dxidxj , i, j = 1, 2, 3 ,

where x denotes the coordinates xi, show that Γ0
00 = Γ0

ij = 0 and that Γ0
0i = Γ0

i0 =
1
2 (∂if) /f . Deduce that the vector field va = (1, 0, 0, 0) is a Killing vector field.

[You may assume the standard symmetries of the Riemann tensor.]

Part II 2007



83

4/II/36A General Relativity

Consider a particle on a trajectory xa(λ). Show that the geodesic equations, with
affine parameter λ, coincide with the variational equations obtained by varying the integral

I =
∫ λ1

λ0

gab(x)
dxa

dλ
dxb

dλ
dλ ,

the end-points being fixed.

In the case that f(r) = 1− 2GMu, show that the space-time metric is given in the
form

ds2 = −f(r) dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2) ,

for a certain function f(r). Assuming the particle motion takes place in the plane θ =
π

2
show that

dφ
dλ

=
h

r2
,

dt
dλ

=
E

f(r)
,

for h,E constants. Writing u = 1/r, obtain the equation(
du
dφ

)2

+ f(r)u2 = − k

h2
f(r) +

E2

h2
,

where k can be chosen to be 1 or 0, according to whether the particle is massive or massless.
In the case that f(r) = 1−GMu, show that

d2u

dφ2
+ u = k

GM

h2
+ 3GMu2 .

In the massive case, show that there is an approximate solution of the form

u =
1
`

(
1 + e cos (αφ)

)
,

where
1− α =

3GM
`

.

What is the interpretation of this solution?
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1/II/36B Fluid Dynamics II

Discuss how the methods of lubrication theory may be used to find viscous fluid
flows in thin layers or narrow gaps, explaining carefully what inequalities need to hold in
order that the theory may apply.

Viscous fluid of kinematic viscosity ν flows under the influence of gravity g, down
an inclined plane making an angle α� 1 with the horizontal. The fluid layer lies between
y = 0 and y = h(x, t), where x, y are distances measured down the plane and perpendicular
to it, and |∂h/∂x| is of the same order as α. Give conditions involving h, α, ν and g that
ensure that lubrication theory can be used, and solve the lubrication equations, together
with the equation of mass conservation, to obtain an equation for h in the form

∂h

∂t
=

∂

∂x

(
−Ah3 +Bh3 ∂h

∂x

)
,

where A,B are constants to be determined. Show that there is a steady solution with
∂h/∂x = k = constant, and interpret this physically. Show also that a solution of this
equation exists in the form of a front, with h(x, t) = F (ξ), where ξ = x−ct, F (0) = 0, and
F (ξ) → h0 as ξ → −∞. Determine c in terms of h0, find the shape of the front implicitly
in the form ξ = G(h), and show that h ∝ (−ξ)1/3 as ξ → 0 from below.
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2/II/36B Fluid Dynamics II

Viscous fluid is extracted through a small hole in the tip of the cone given by
θ = α in spherical polar coordinates (R, θ, φ). The total volume flux through the hole
takes the constant value Q. It is given that there is a steady solution of the Navier–Stokes
equations for the fluid velocity u. For small enough R, the velocity u is well approximated
by u ∼ (−A/R2, 0, 0), where A = Q/[2π(1 − cosα)] except in thin boundary layers near
θ = α.

(i) Verify that the volume flux through the hole is approximately Q.

(ii) Construct a Reynolds number (depending on R) in terms of Q and the kinematic
viscosity ν, and thus give an estimate of the value of R below which solutions of
this type will appear.

(iii) Assuming that there is a boundary layer near θ = α, write down the boundary layer
equations in the usual form, using local Cartesian coordinates x and y parallel and
perpendicular to the boundary. Show that the boundary layer thickness δ(x) is
proportional to x

3
2 , and show that the x component of the velocity ux may be

written in the form

ux = − A

x2
F ′(η), where η =

y

δ(x)
.

Derive the equation and boundary conditions satisfied by F . Give an expression, in terms
of F , for the volume flux through the boundary layer, and use this to derive the R-
dependence of the first correction to the flow outside the boundary layer.
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3/II/36B Fluid Dynamics II
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R

2a

2b

Viscous fluid of kinematic viscosity ν and density ρ flows in a curved pipe of constant
rectangular cross section and constant curvature. The cross-section has height 2a and
width 2b (in the radial direction) with b� a, and the radius of curvature of the inner wall
is R, with R� b. A uniform pressure gradient −G is applied along the pipe.

(i) Assume to a first approximation that the pipe is straight, and ignore variation in
the x-direction, where (x, y, z) are Cartesian coordinates referred to an origin at
the centre of the section, with x increasing radially and z measured along the pipe.
Find the flow field along the pipe in the form u = (0, 0, w(y)).

(ii) It is given that the largest component of the inertial acceleration u · ∇u due to the
curvature of the pipe is −w2/R in the x direction. Consider the secondary flow us

induced in the x, y plane, again ignoring variations in x and any end effects (except
for the requirement that there be zero total mass flux in the x direction). Show
that us takes the form us = (u(y), 0, 0), where

u(y) =
G2

120ρ2ν3R

(
5a2y4 − y6

)
+
C

2
y2 +D,

and write down two equations determining the constants C and D. [It is not
necessary to solve these equations.]

Give conditions on the parameters that ensure that |u| � |w|.
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4/II/37B Fluid Dynamics II

(i) Assuming that axisymmetric incompressible flow u = (uR, uθ, 0), with vorticity
(0, 0, ω) in spherical polar coordinates (R, θ, φ) satisfies the equations

u = ∇×
(

0, 0,
Ψ

Rsin θ

)
, ω = − 1

Rsin θ
D2Ψ,

where

D2 ≡ ∂2

∂R2
+

sinθ
R2

∂

∂θ

(
1

sinθ
∂

∂θ

)
,

show that for Stokes flow Ψ satisfies the equation

D4Ψ = 0. (∗)

(ii) A rigid sphere of radius a moves at velocity U ẑ through viscous fluid of density
ρ and dynamic viscosity µ which is at rest at infinity. Assuming Stokes flow
and by applying the boundary conditions at R = a and as R → ∞, verify that
Ψ = (AR+B/R) sin2 θ is the appropriate solution to (∗) for this flow, where A and
B are to be determined.

(iii) Hence find the velocity field outside the sphere. Without direct calculation, explain
why the drag is in the z direction and has magnitude proportional to U .

(iv) A second identical sphere is introduced into the flow, at a distance b� a from the
first, and moving at the same velocity. Justify the assertion that, when the two
spheres are at the same height, or when one is vertically above the other, the drag
on each sphere is the same. Calculate the leading correction to the drag in each
case, to leading order in a/b.

[You may quote without proof the fact that, for an axisymmetric function F (R, θ),

∇× (0, 0, F ) =
(

1
R sin θ

∂

∂θ
(sin θF ), − 1

R

∂

∂R
(RF ), 0

)
in spherical polar coordinates (R, θ, φ).]
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1/II/37C Waves

A uniform elastic solid with density ρ and Lamé moduli λ and µ occupies the region
between rigid plane boundaries y = 0 and y = h. Show that SH waves can propagate in
the x direction within this layer, and find the dispersion relation for such waves.

Deduce for each mode (a) the cutoff frequency, (b) the phase velocity, and (c) the
group velocity.

Show also that for each mode the kinetic energy and elastic energy are equal in an
average sense to be made precise.

[You may assume that the elastic energy per unit volume W = 1
2 (λe 2

kk + 2µeijeij).]

2/II/37C Waves

Show that for a one-dimensional flow of a perfect gas at constant entropy the
Riemann invariants u ± 2(c−c0)/(γ−1) are constant along characteristics dx/dt = u±c.

Define a simple wave. Show that in a right-propagating simple wave

∂u

∂t
+

(
c0 +

γ + 1
2

u

)
∂u

∂x
= 0 .

Now suppose instead that, owing to dissipative effects,

∂u

∂t
+

(
c0 +

γ + 1
2

u

)
∂u

∂x
= −αu

where α is a positive constant. Suppose also that u is prescribed at t = 0 for all x, say
u(x, 0) = v(x). Demonstrate that, unless a shock forms,

u(x, t) = v(x0) e−αt

where, for each x and t, x0 is determined implicitly as the solution of the equation

x− c0t = x0 +
γ + 1

2

(
1− e−αt

α

)
v(x0) .

Deduce that a shock will not form at any (x, t) if

α >
γ + 1

2
max
v′< 0

|v′(x0)| .
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3/II/37C Waves

Waves propagating in a slowly-varying medium satisfy the local dispersion relation

ω = Ω(k,x, t)

in the standard notation. Give a brief derivation of the ray-tracing equations for such
waves; a formal justification is not required.

An ocean occupies the region x > 0 , −∞ < y <∞ . Water waves are incident
on a beach near x = 0. The undisturbed water depth is

h(x) = αxp

with α a small positive constant and p positive. The local dispersion relation is

Ω2 = gκ tanh(κh) where κ2 = k2
1 + k2

2

and where k1, k2 are the wavenumber components in the x, y directions. Far from the
beach, the waves are planar with frequency ω∞ and crests making an acute angle θ∞ with
the shoreline x = 0 . Obtain a differential equation (in implicit form) for a ray y = y(x) ,
and show that near the shore the ray satisfies

y − y0 ∼ Axq

where A and q should be found. Sketch the appearance of the wavecrests near the shoreline.

4/II/38C Waves

Show that, for a plane acoustic wave, the acoustic intensity p̃u may be written as
ρ0c0|u|2k̂ in the standard notation.

Derive the general spherically-symmetric solution of the wave equation. Use it to
find the velocity potential φ(r, t) for waves radiated into an unbounded fluid by a pulsating
sphere of radius

a (1 + ε eiωt) (ε� 1) .

By considering the far field, or otherwise, find the time-average rate at which energy
is radiated by the sphere.[

You may assume that ∇2φ =
1
r2

∂

∂r

(
r2
∂φ

∂r

)
.

]
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1/II/38C Numerical Analysis

(a) For a numerical method to solve y′ = f(t, y), define the linear stability domain and
state when such a method is A-stable.

(b) Determine all values of the real parameter a for which the Runge–Kutta method

k1 = f
(
tn + ( 1

2 − a)h, yn + h
[
1
4k1 + ( 1

4 − a)k2

])
,

k2 = f
(
tn + ( 1

2 + a)h, yn + h
[
( 1
4 + a)k1 + 1

4k2

])
,

yn+1 = yn + 1
2h(k1 + k2)

is A-stable.

2/II/38C Numerical Analysis

(a) State the Householder–John theorem and explain how it can be used to design
iterative methods for solving a system of linear equations Ax = b .

(b) Let A = L+D+U where D is the diagonal part of A, and L and U are, respectively,
the strictly lower and strictly upper triangular parts of A. Given a vector b, consider
the following iterative scheme:

(D + ωL)x(k+1) = (1− ω)Dx(k) − ωUx(k) + ωb .

Prove that if A is a symmetric positive definite matrix, and ω ∈ (0, 2), then the
above iteration converges to the solution of the system Ax = b.
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3/II/38C Numerical Analysis

(a) Prove that all Toeplitz symmetric tridiagonal M ×M matrices

A =


a b 0 · · · 0

b a b
. . .

...

0
. . . . . . . . . 0

...
. . . b a b

0 · · · 0 b a


share the same eigenvectors (v(k))M

k=1 with components v
(k)
i = sin

kiπ

M + 1
,

i = 1, . . . ,M , and eigenvalues to be determined.

(b) The diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − 1

2µ
(
un+1

m−1 − 2un+1
m + un+1

m+1

)
= un

m + 1
2µ

(
un

m−1 − 2un
m + un

m+1

)
,

for m = 1, . . . ,M,

where µ = ∆t/(∆x)2, ∆x = 1/(M + 1), and un
m is an approximation to

u(m∆x, n∆t). Assuming that u(0, t) = u(1, t) = 0, ∀t, show that the above
scheme can be written in the form

Bun+1 = Cun, 0 6 n 6 (T/∆t)− 1

where un = [un
1 , . . . , u

n
M ]T and the real matrices B and C should be found. Using

matrix analysis, find the range of µ for which the scheme is stable. [Do not use
Fourier analysis.]
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(a) Suppose that A is a real n × n matrix, and that w ∈ Rn and λ1 ∈ R are given so
that Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce(1),
where e(1) is the first coordinate vector and c 6= 0. Let Â = SAS−1. Prove
that the eigenvalues of A are λ1 together with the eigenvalues of the bottom right
(n− 1)× (n− 1) submatrix of Â.

(b) Suppose again that A is a real n × n matrix, and that two linearly independent
vectors v, w ∈ Rn are given such that the linear subspace L{v, w} spanned by v
and w is invariant under the action of A, i.e.,

x ∈ L{v, w} ⇒ Ax ∈ L{v, w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let
S be a non-singular matrix such that R = SV is upper triangular, that is,

R = SV = S ×


v1 w1

v2 w2

v3 w3

: :
vn wn

 =


r11 r12
0 r22
0 0
: :
0 0

 .

Again let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the
top left 2 × 2 submatrix of Â together with the eigenvalues of the bottom right
(n− 2)× (n− 2) submatrix of Â.
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