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SECTION I

1I Number Theory
Define the Legendre symbol and the Jacobi symbol.

State the law of quadratic reciprocity for the Jacobi symbol.

Compute the value of the Jacobi symbol

(
247

321

)
, stating clearly any results you use.

2F Topics in Analysis
(a) Let γ : [0, 1] → C \ {0} be a continuous map such that γ(0) = γ(1). Define the
winding number w(γ; 0) of γ about the origin. State precisely a theorem about homotopy
invariance of the winding number.

(b) Let f : C → C be a continuous map such that z−10f(z) is bounded as |z| → ∞. Prove
that there exists a complex number z0 such that

f(z0) = z110 .

3G Geometry and Groups

Define the modular group acting on the upper half-plane. Explain briefly why it acts

discontinuously and describe a fundamental domain. You should prove that the region

which you describe is a fundamental domain.

4G Coding and Cryptography
What is a (binary) linear code? What does it mean to say that a linear code has

length n and minimum weight d? When is a linear code perfect? Show that, if n = 2r−1,
there exists a perfect linear code of length n and minimum weight 3.

Part II, Paper 2
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5K Statistical Modelling
The purpose of the following study is to investigate differences among certain treatments
on the lifespan of male fruit flies, after allowing for the effect of the variable ‘thorax length’
(thorax) which is known to be positively correlated with lifespan. Data was collected on
the following variables:

longevity lifespan in days

thorax (body) length in mm

treat a five level factor representing the treatment groups. The levels were labelled
as follows: “00”, “10”, “80”, “11”, “81”.

No interactions were found between thorax length and the treatment factor. A
linear model with thorax as the covariate, treat as a factor (having the above 5 levels)
and longevity as the response was fitted and the following output was obtained. There
were 25 males in each of the five groups, which were treated identically in the provision of
fresh food.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -49.98 10.61 -4.71 6.7e-06

treat10 2.65 2.98 0.89 0.37

treat11 -7.02 2.97 -2.36 0.02

treat80 3.93 3.00 1.31 0.19

treat81 -19.95 3.01 -6.64 1.0e-09

thorax 135.82 12.44 10.92 <2e-16

Residual standard error: 10.5 on 119 degrees of freedom

Multiple R-Squared: 0.656, Adjusted R-squared: 0.642

F-statistics: 45.5 on 5 and 119 degrees of freedom, p-value: 0

(a) Assuming the same treatment, how much longer would you expect a fly with a
thorax length 0.1mm greater than another to live?

(b) What is the predicted difference in longevity between a male fly receiving treatment
treat10 and treat81 assuming they have the same thorax length?

(c) Because the flies were randomly assigned to the five groups, the distribution of
thorax lengths in the five groups are essentially equal. What disadvantage would
the investigators have incurred by ignoring the thorax length in their analysis (i.e.,
had they done a one-way ANOVA instead)?

(d) The residual-fitted plot is shown in the left panel of Figure 1 overleaf. Is it possible
to determine if the regular residuals or the studentized residuals have been used to
construct this plot? Explain.

(e) The Box–Cox procedure was used to determine a good transformation for this
data. The plot of the log-likelihood for λ is shown in the right panel of Figure 1.
What transformation should be used to improve the fit and yet retain some
interpretability?

Part II, Paper 2 [TURN OVER
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6C Mathematical Biology
Consider a birth-death process in which the birth rate per individual is λ and the

death rate per individual in a population of size n is βn.

Let P (n, t) be the probability that the population has size n at time t. Write down
the master equation for the system, giving an expression for ∂P (n, t)/∂t.

Show that

d

dt
〈n〉 = λ〈n〉 − β〈n2〉 ,

where 〈.〉 denotes the mean.

Deduce that in a steady state 〈n〉 6 λ/β.

Part II, Paper 2
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7D Dynamical Systems
Consider the dynamical system

ẋ = µx+ x3 − axy, ẏ = µ− x2 − y ,

where a is a constant.

(a) Show that there is a bifurcation from the fixed point (0, µ) at µ = 0.

(b) Find the extended centre manifold at leading non-trivial order in x. Hence find
the type of bifurcation, paying particular attention to the special values a = 1
and a = −1. [Hint. At leading order, the extended centre manifold is of the form
y = µ+ αx2 + βµx2 + γx4, where α, β, γ are constants to be determined.]

8E Further Complex Methods
The hypergeometric function F (a, b; c; z) is defined as the particular solution of the

second order linear ODE characterised by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b





that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1.

Using the fact that a second solution w(z) of the above ODE is of the form

w(z) = z1−cu(z) ,

where u(z) is analytic in the neighbourhood of the origin, express w(z) in terms of F .
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9A Classical Dynamics

(a) The action for a system with a generalized coordinate q is given by

S =

∫ t2

t1

L(q, q̇, t)dt .

State the Principle of Least Action and state the Euler–Lagrange equation.

(b) Consider a light rigid circular wire of radius a and centre O. The wire lies in a
vertical plane, which rotates about the vertical axis through O. At time t the plane
containing the wire makes an angle φ(t) with a fixed vertical plane. A bead of mass
m is threaded onto the wire. The bead slides without friction along the wire, and its
location is denoted by A. The angle between the line OA and the downward vertical
is θ(t).

Show that the Lagrangian of this system is

ma2

2
θ̇2 +

ma2

2
φ̇2 sin2 θ +mga cos θ .

Calculate two independent constants of the motion, and explain their physical signif-
icance.

Part II, Paper 2
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10E Cosmology
The Friedmann equation for the scale factor a(t) of a homogeneous and isotropic

universe of mass density ρ is

H2 =
8πGρ

3
− kc2

a2
,

(
H =

ȧ

a

)

where ȧ = da/dt and k is a constant. The mass conservation equation for a fluid of mass
density ρ and pressure P is

ρ̇ = −3
(
ρ+ P/c2

)
H .

Conformal time τ is defined by dτ = a−1dt. Show that

H = aH ,

(
H =

a′

a

)
,

where a′ = da/dτ . Hence show that the acceleration equation can be written as

H′ = −4π

3
G (ρ+ 3P/c2) a2 .

Define the density parameter Ωm and show that in a matter-dominated era, in which
P = 0, it satisfies the equation

Ω′
m = HΩm(Ωm − 1) .

Use this result to briefly explain the “flatness problem” of cosmology.
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SECTION II

11F Topics in Analysis

(a) State Runge’s theorem about uniform approximability of analytic functions by com-
plex polynomials.

(b) Let K be a compact subset of the complex plane.

(i) Let Σ be an unbounded, connected subset of C \K. Prove that for each ζ ∈ Σ,
the function f(z) = (z − ζ)−1 is uniformly approximable on K by a sequence of
complex polynomials.

[You may not use Runge’s theorem without proof.]

(ii) Let Γ be a bounded, connected component of C\K. Prove that there is no point
ζ ∈ Γ such that the function f(z) = (z − ζ)−1 is uniformly approximable on K
by a sequence of complex polynomials.

12G Coding and Cryptography
What does it mean to say that f : Fd

2 → Fd
2 is a linear feedback shift register?

Let (xn)n>0 be a stream produced by such a register. Show that there exist N,M with
N +M 6 2d − 1 such that xr+N = xr for all r > M .

Describe and justify the Berlekamp–Massey method for ‘breaking’ a cipher stream
arising from a linear feedback register of unknown length.

Let xn, yn, zn be three streams produced by linear feedback registers. Set

kn = xn if yn = zn

kn = yn if yn 6= zn .

Show that kn is also a stream produced by a linear feedback register. Sketch proofs of any
theorems you use.
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13C Mathematical Biology
A population of blowflies is modelled by the equation

dx

dt
= R(x(t− T ))− kx(t) , (1)

where k is a constant death rate and R is a function of one variable such that R(z) > 0
for z > 0, with R(z) ∼ βz as z → 0 and R(z) → 0 as z → ∞. The constants T , k and β
are all positive, with β > k. Give a brief biological motivation for the term R(x(t−T )), in
which you explain both the form of the function R and the appearance of a delay time T .

A suitable model for R(z) is βz exp(−z/d), where d is a positive constant. Show
that in this case there is a single steady state of the system with non-zero population, i.e.
with x(t) = xs > 0, with xs constant.

Now consider the stability of this steady state. Show that if x(t) = xs + y(t), with
y(t) small, then y(t) satisfies a delay differential equation of the form

dy

dt
= −ky(t) +By(t− T ) , (2)

where B is a constant to be determined. Show that y(t) = est is a solution of (2) if
s = −k + Be−sT . If s = σ + iω, where σ and ω are both real, write down two equations
relating σ and ω.

Deduce that the steady state is stable if |B| < k. Show that, for this particular
model for R, |B| > k is possible only if B < 0.

By considering B decreasing from small negative values, show that an instability

will appear when |B| >
[
k2 + g(kT )2

T 2

]1/2
, where π/2 < g(kT ) < π.

Deduce that the steady state xs of (1) is unstable if

β > k exp

[(
1 +

π2

k2T 2

)1/2

+ 1

]
.
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14E Further Complex Methods
Let the complex function q(x, t) satisfy

i
∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
= 0 , 0 < x < ∞ , 0 < t < T ,

where T is a positive constant. The unified transform method implies that the solution of
any well-posed problem for the above equation is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂0(k)dk

− 1

2π

∫

L
eikx−ik2t

[
kg̃0(ik

2, t)− ig̃1(ik
2, t)

]
dk , (1)

where L is the union of the rays (i∞, 0) and (0,∞), q̂0(k) denotes the Fourier transform
of the initial condition q0(x), and g̃0, g̃1 denote the t-transforms of the boundary values
q(0, t), qx(0, t):

q̂0(k) =

∫ ∞

0
e−ikxq0(x)dx, Im k 6 0 ,

g̃0(k, t) =

∫ t

0
eksq(0, s)ds , g̃1(k, t) =

∫ t

0
eksqx(0, s)ds , k ∈ C , 0 < t < T .

Furthermore, q0(x), q(0, t) and qx(0, t) are related via the so-called global relation

eik
2tq̂(k, t) = q̂0(k) + kg̃0(ik

2, t)− ig̃1(ik
2, t) , Im k 6 0 , (2)

where q̂(k, t) denotes the Fourier transform of q(x, t).

(a) Assuming the validity of (1) and (2), use the global relation to eliminate g̃1 from
equation (1).

(b) For the particular case that

q0(x) = e−a2x , 0 < x < ∞ ; q(0, t) = cos bt , 0 < t < T ,

where a and b are real numbers, use the representation obtained in (a) to express the
solution in terms of an integral along the real axis and an integral along L (you should not
attempt to evaluate these integrals). Show that it is possible to deform these two integrals
to a single integral along a new contour L̃, which you should sketch.

[You may assume the validity of Jordan’s lemma.]

Part II, Paper 2
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15A Classical Dynamics
Consider a rigid body with principal moments of inertia I1, I2, I3.

(a) Derive Euler’s equations of torque-free motion

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

with components of the angular velocity ω = (ω1, ω2, ω3) given in the body frame.

(b) Show that rotation about the second principal axis is unstable if (I2−I3)(I1−I2) > 0.

(c) The principal moments of inertia of a uniform cylinder of radius R, height h and mass
M about its centre of mass are

I1 = I2 =
MR2

4
+

Mh2

12
; I3 =

MR2

2
.

The cylinder has two identical cylindrical holes of radius r drilled along its length.
The axes of symmetry of the holes are at a distance a from the axis of symmetry of
the cylinder such that r < R/2 and r < a < R− r. All three axes lie in a single plane.

Compute the principal moments of inertia of the body.

16H Logic and Set Theory
Explain what is meant by a substructure of a Σ-structure A, where Σ is a first-order

signature (possibly including both predicate symbols and function symbols). Show that
if B is a substructure of A, and φ is a first-order formula over Σ with n free variables,
then [φ]B = [φ]A ∩ Bn if φ is quantifier-free. Show also that [φ]B ⊆ [φ]A ∩ Bn if φ is an
existential formula (that is, one of the form (∃x1, . . . , xm)ψ where ψ is quantifier-free),
and [φ]B ⊇ [φ]A ∩ Bn if φ is a universal formula. Give examples to show that the two
latter inclusions can be strict.

Show also that

(a) if T is a first-order theory whose axioms are all universal sentences, then any
substructure of a T -model is a T -model;

(b) if T is a first-order theory such that every first-order formula φ is T -provably
equivalent to a universal formula (that is, T ⊢ (φ⇔ ψ) for some universal ψ), and B is a
sub-T -model of a T -model A, then [φ]B = [φ]A ∩ Bn for every first-order formula φ with
n free variables.
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17F Graph Theory
Let G be a k-connected graph (k > 2). Let v ∈ G and let U ⊂ V (G)\{v} with

|U | > k. Show that G contains k paths from v to U with any two having only the vertex
v in common.

[No form of Menger’s theorem or of the Max-Flow-Min-Cut theorem may be assumed
without proof.]

Deduce that G must contain a cycle of length at least k.

Suppose further that G has no independent set of vertices of size > k. Show that
G is Hamiltonian.

[Hint. If not, let C be a cycle of maximum length in G and let v ∈ V (G)\V (C);
consider the set of vertices on C immediately preceding the endvertices of a collection of
k paths from v to C that have only the vertex v in common.]

18H Galois Theory
Let K,L be subfields of C with K ⊂ L.

Suppose that K is contained in R and L/K is a finite Galois extension of odd degree.
Prove that L is also contained in R.

Give one concrete example of K,L as above with K 6= L. Also give an example
in which K is contained in R and L/K has odd degree, but is not Galois and L is not
contained in R.

[Standard facts on fields and their extensions can be quoted without proof, as long
as they are clearly stated.]

19H Representation Theory
Suppose that G is a finite group. Define the inner product of two complex-valued

class functions on G. Prove that the characters of the irreducible representations of G
form an orthonormal basis for the space of complex-valued class functions.

Suppose that p is a prime and Fp is the field of p elements. Let G =GL2(Fp). List
the conjugacy classes of G.

Let G act naturally on the set of lines in the space F2
p. Compute the corresponding

permutation character and show that it is reducible. Decompose this character as a sum
of two irreducible characters.
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20F Number Fields
Let K = Q(α) where α is a root of X2 −X + 12 = 0. Factor the elements 2, 3, α

and α+ 2 as products of prime ideals in OK . Hence compute the class group of K.

Show that the equation y2 + y = 3(x5 − 4) has no integer solutions.

21G Algebraic Topology
State the Seifert–Van Kampen Theorem. Deduce that if f : S1 → X is a continuous

map, where X is path-connected, and Y = X ∪f B2 is the space obtained by adjoining
a disc to X via f , then Π1(Y ) is isomorphic to the quotient of Π1(X) by the smallest
normal subgroup containing the image of f∗ : Π1(S

1) → Π1(X).

State the classification theorem for connected triangulable 2-manifolds. Use the
result of the previous paragraph to obtain a presentation of Π1(Mg), where Mg denotes
the compact orientable 2-manifold of genus g > 0.

22G Linear Analysis
What is meant by a normal topological space? State and prove Urysohn’s lemma.

Let X be a normal topological space and let S ⊆ X be closed. Show that there
is a continuous function f : X → [0, 1] with f−1(0) = S if, and only if, S is a countable
intersection of open sets.

[Hint. If S =
⋂∞

n=1 Un then consider
∑∞

n=1 2
−nfn, where the functions fn : X → [0, 1]

are supplied by an appropriate application of Urysohn’s lemma.]

23I Riemann Surfaces
Let X be the algebraic curve in C2 defined by the polynomial p(z, w) = zd +wd +1

where d is a natural number. Using the implicit function theorem, or otherwise, show
that there is a natural complex structure on X. Let f : X → C be the function defined
by f(a, b) = b. Show that f is holomorphic. Find the ramification points and the
corresponding branching orders of f .

Assume that f extends to a holomorphic map g : Y → C ∪ {∞} from a compact
Riemann surface Y to the Riemann sphere so that g−1(∞) = Y \ X and that g has no
ramification points in g−1(∞). State the Riemann–Hurwitz formula and apply it to g to
calculate the Euler characteristic and the genus of Y .
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24I Algebraic Geometry

Let k be a field, J an ideal of k[x1, . . . , xn], and let R = k[x1, . . . , xn]/J . Define the

radical
√
J of J and show that it is also an ideal.

The Nullstellensatz says that if J is a maximal ideal, then the inclusion k ⊆ R is an

algebraic extension of fields. Suppose from now on that k is algebraically closed. Assuming

the above statement of the Nullstellensatz, prove the following.

(i) If J is a maximal ideal, then J = (x1 − a1, . . . , xn − an), for some (a1, . . . , an) ∈ kn.

(ii) If J 6= k[x1, . . . , xn], then Z(J) 6= ∅, where

Z(J) = {a ∈ kn | f(a) = 0 for all f ∈ J}.

(iii) For V an affine subvariety of kn, we set

I(V ) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ V }.

Prove that J = I(V ) for some affine subvariety V ⊆ kn, if and only if J =
√
J .

[Hint. Given f ∈ J , you may wish to consider the ideal in k[x1, . . . , xn, y] generated

by J and yf − 1.]

(iv) If A is a finitely generated algebra over k, and A does not contain nilpotent elements,

then there is an affine variety V ⊆ kn, for some n, with A = k[x1, . . . , xn]/I(V ).

Assuming char(k) 6= 2, find
√
J when J is the ideal (x(x− y)2, y(x+ y)2) in k[x, y].

25I Differential Geometry
Define the Gauss map N for an oriented surface S ⊂ R3. Show that at each p ∈ S

the derivative of the Gauss map

dNp : TpS → TN(p)S
2 = TpS

is self-adjoint. Define the principal curvatures k1, k2 of S.

Now suppose that S is compact (and without boundary). By considering the square
of the distance to the origin, or otherwise, prove that S has a point p with k1(p)k2(p) > 0.

[You may assume that the intersection of S with a plane through the normal direction at
p ∈ S contains a regular curve through p.]
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26J Probability and Measure
The Fourier transform of a Lebesgue integrable function f ∈ L1(R) is given by

f̂(u) =

∫

R
f(x)eixudµ(x),

where µ is Lebesgue measure on the real line. For f(x) = e−ax2
, x ∈ R, a > 0, prove that

f̂(u) =

√
π

a
e−

u2

4a .

[You may use properties of derivatives of Fourier transforms without proof provided they
are clearly stated, as well as the fact that φ(x) = (2π)−1/2e−x2/2 is a probability density
function.]

State and prove the almost everywhere Fourier inversion theorem for Lebesgue
integrable functions on the real line. [You may use standard results from the course,
such as the dominated convergence and Fubini’s theorem. You may also use that
gt ∗ f(x) :=

∫
R gt(x− y)f(y)dy where gt(z) = t−1φ(z/t), t > 0, converges to f in L1(R) as

t → 0 whenever f ∈ L1(R).]

The probability density function of a Gamma distribution with scalar parameters
λ > 0, α > 0 is given by

fα,λ(x) = λe−λx(λx)α−11[0,∞)(x).

Let 0 < α < 1, λ > 0. Is f̂α,λ integrable?
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27K Applied Probability
(a) A colony of bacteria evolves as follows. Let X be a random variable with values

in the positive integers. Each bacterium splits into X copies of itself after an exponentially
distributed time of parameter λ > 0. Each of the X daughters then splits in the same way
but independently of everything else. This process keeps going forever. Let Zt denote the
number of bacteria at time t. Specify the Q-matrix of the Markov chain Z = (Zt, t > 0).
[It will be helpful to introduce pn = P(X = n), and you may assume for simplicity that
p0 = p1 = 0.]

(b) Using the Kolmogorov forward equation, or otherwise, show that if u(t) =
E(Zt|Z0 = 1), then u′(t) = αu(t) for some α to be explicitly determined in terms of X.
Assuming that E(X) < ∞, deduce the value of u(t) for all t > 0, and show that Z does not
explode. [You may differentiate series term by term and exchange the order of summation
without justification.]

(c) We now assume that X = 2 with probability 1. Fix 0 < q < 1 and let
φ(t) = E(qZt |Z0 = 1). Show that φ satisfies

φ(t) = qe−λt +

∫ t

0
λe−λsφ(t− s)2ds .

By making the change of variables u = t− s, show that dφ/dt = λφ(φ − 1). Deduce that
for all n > 1, P(Zt = n|Z0 = 1) = βn−1(1− β) where β = 1− e−λt.

28K Principles of Statistics
Carefully defining all italicised terms, show that, if a sufficiently general method of

inference respects both the Weak Sufficiency Principle and the Conditionality Principle,
then it respects the Likelihood Principle.

The position Xt of a particle at time t > 0 has the Normal distribution N (0, φt),
where φ is the value of an unknown parameter Φ; and the time, Tx, at which the particle
first reaches position x 6= 0 has probability density function

px(t) =
|x|√
2πφt3

exp

(
− x2

2φt

)
(t > 0) .

Experimenter E1 observes Xτ , and experimenter E2 observes Tξ, where τ > 0, ξ 6= 0
are fixed in advance. It turns out that Tξ = τ . What does the Likelihood Principle say
about the inferences about Φ to be made by the two experimenters?

E1 bases his inference about Φ on the distribution and observed value of X2
τ /τ ,

while E2 bases her inference on the distribution and observed value of ξ2/Tξ. Show that
these choices respect the Likelihood Principle.
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29J Optimization and Control
Describe the elements of a generic stochastic dynamic programming equation for the

problem of maximizing the expected sum of discounted rewards accrued at times 0, 1, . . . .
What is meant by the positive case? What is specially true in this case that is not true in
general?

An investor owns a single asset which he may sell once, on any of the days
t = 0, 1, . . . . On day t he will be offered a price Xt. This value is unknown until day
t, is independent of all other offers, and a priori it is uniformly distributed on [0, 1].
Offers remain open, so that on day t he may sell the asset for the best of the offers made
on days 0, . . . , t. If he sells for x on day t then the reward is xβt. Show from first principles
that if 0 < β < 1 then there exists x̄ such that the expected reward is maximized by selling
the first day the offer is at least x̄.

For β = 4/5, find both x̄ and the expected reward under the optimal policy.

Explain what is special about the case β = 1.

30J Stochastic Financial Models
(i) Give the definition of Brownian motion.

(ii) The price St of an asset evolving in continuous time is represented as

St = S0 exp (σWt + µt) ,

where (Wt)t>0 is a standard Brownian motion and σ and µ are constants. If riskless
investment in a bank account returns a continuously compounded rate of interest r, derive
the Black–Scholes formula for the time-0 price of a European call option on asset S with
strike price K and expiry T. [Standard results from the course may be used without proof
but must be stated clearly.]

(iii) In the same financial market, a certain contingent claim C pays (ST )
n at time

T , where n > 1. Find the closed-form expression for the time-0 value of this contingent
claim.

Show that for every s > 0 and n > 1,

sn = n(n− 1)

∫ s

0
kn−2(s− k)dk.

Using this identity, how would you replicate (at least approximately) the contingent claim
C with a portfolio consisting only of European calls?
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31B Partial Differential Equations
Consider the elliptic Dirichlet problem on Ω ⊂ Rn, Ω bounded with a smooth boundary:

∆u− eu = f in Ω, u = uD on ∂Ω.

Assume that uD ∈ L∞(∂Ω) and f ∈ L∞(Ω).

(i) State the strong Minimum-Maximum Principle for uniformly elliptic operators.

(ii) Prove that there exists at most one classical solution of the boundary value problem.

(iii) Assuming further that f > 0 in Ω, use the maximum principle to obtain an upper
bound on the solution (assuming that it exists).

32D Integrable Systems
Consider the KdV equation for the function u(x, t)

ut = 6uux − uxxx . (1)

(a) Write equation (1) in the Hamiltonian form

ut =
∂

∂x

δH[u]

δu
,

where the functional H[u] should be given. Use equation (1), together with the
boundary conditions u → 0 and ux → 0 as |x| → ∞, to show that

∫
R u2dx is

independent of t.

(b) Use the Gelfand–Levitan–Marchenko equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y)dz = 0 (2)

to find the one soliton solution of the KdV equation, i.e.

u(x, t) = − 4βχ exp (−2χx)
[
1 + β

2χ exp (−2χx)
]2 .

[Hint. Consider F (x) = β exp (−χx), with β = β0 exp (8χ
3t), where β0, χ are

constants, and t should be regarded as a parameter in equation (2). You may use
any facts about the Inverse Scattering Transform without proof.]
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33A Principles of Quantum Mechanics
(a) Define the Heisenberg picture of quantum mechanics in relation to the

Schrödinger picture. Explain how the two pictures provide equivalent descriptions of
physical results.

(b) Derive the equation of motion for an operator in the Heisenberg picture.

For a particle of mass m moving in one dimension, the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂) ,

where x̂ and p̂ are the position and momentum operators, and the state vector is |Ψ〉. The
eigenstates of x̂ and p̂ satisfy

〈x|p〉 = 1√
2π~

eipx/~ , 〈x|x′〉 = δ(x− x′) , 〈p|p′〉 = δ(p − p′) .

Use standard methods in the Dirac formalism to show that

〈x|p̂|x′〉 = −i~
∂

∂x
δ(x− x′) ,

〈p|x̂|p′〉 = i~
∂

∂p
δ(p − p′) .

Calculate 〈x|Ĥ|x′〉 and express 〈x|p̂|Ψ〉, 〈x|Ĥ|Ψ〉 in terms of the position space
wavefunction Ψ(x).

Write down the momentum space Hamiltonian for the potential

V (x̂) = mω2x̂4/2 .
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34E Applications of Quantum Mechanics
A solution of the S-wave Schrödinger equation at large distances for a particle of

mass m with momentum ~k and energy E = ~2k2/2m, has the form

ψ0(r) ∼ A

r
[sin kr + g(k) cos kr] .

Define the phase shift δ0 and verify that tan δ0(k) = g(k).

Write down a formula for the cross-section σ, for a particle of momentum ~k
scattering on a radially symmetric potential of finite range, as a function of the phase
shifts δl for the partial waves with quantum number l.

(i) Suppose that g(k) = −k/K for K > 0. Show that there is a bound state of energy
EB = −~2K2/2m. Neglecting the contribution from partial waves with l > 0 show that
the cross section is

σ =
4π

K2 + k2
.

(ii) Suppose now that g(k) = γ/(K0 − k) with K0 > 0, γ > 0 and γ ≪ K0. Neglecting the
contribution from partial waves with l > 0, derive an expression for the cross section σ,
and show that it has a local maximum when E ≈ ~2K2

0/2m. Discuss the interpretation of
this phenomenon in terms of resonant behaviour and derive an expression for the decay
width of the resonant state.

35C Statistical Physics
Explain what is meant by an isothermal expansion and an adiabatic expansion of a

gas.

By first establishing a suitable Maxwell relation, show that

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p

and
∂CV

∂V

∣∣∣∣
T

= T
∂2p

∂T 2

∣∣∣∣
V

.

The energy in a gas of blackbody radiation is given by E = aV T 4, where a is a constant.
Derive an expression for the pressure p(V, T ).

Show that if the radiation expands adiabatically, V T 3 is constant.

Part II, Paper 2



21

36B General Relativity
The metric of any two-dimensional rotationally-symmetric curved space can be

written in terms of polar coordinates, (r, θ), with 0 6 θ < 2π, r > 0, as

ds2 = e2φ(dr2 + r2dθ2) ,

where φ = φ(r). Show that the Christoffel symbols Γr
rθ, Γ

θ
rr and Γθ

θθ are each zero, and
compute Γr

rr, Γ
r
θθ and Γθ

rθ = Γθ
θr.

The Ricci tensor is defined by

Rab = Γc
ab,c − Γc

ac,b + Γc
cdΓ

d
ab − Γd

acΓ
c
bd

where a comma here denotes partial derivative. Prove that Rrθ = 0 and that

Rrr = −φ′′ − φ′

r
, Rθθ = r2Rrr .

Suppose now that, in this space, the Ricci scalar takes the constant value −2. Find
a differential equation for φ(r).

By a suitable coordinate transformation r → χ(r), θ unchanged, this space of
constant Ricci scalar can be described by the metric

ds2 = dχ2 + sinh2 χdθ2 .

From this coordinate transformation, find coshχ and sinhχ in terms of r. Deduce that

eφ(r) =
2A

1−A2r2
,

where 0 6 Ar < 1, and A is a positive constant.

[You may use

∫
dχ

sinhχ
=

1

2
log(coshχ− 1)− 1

2
log(coshχ+ 1) + constant .]
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37C Fluid Dynamics II
An incompressible viscous liquid occupies the long thin region 0 6 y 6 h(x) for

0 6 x 6 ℓ, where h(x) = d1 + αx with h(0) = d1, h(ℓ) = d2 < d1 and d1 ≪ ℓ. The top
boundary at y = h(x) is rigid and stationary. The bottom boundary at y = 0 is rigid and
moving at velocity (U, 0, 0). Fluid can move in and out of the ends x = 0 and x = ℓ, where
the pressure is the same, namely p0.

Explaining the approximations of lubrication theory as you use them, find the
velocity profile in the long thin region, and show that the volume flux Q (per unit width
in the z-direction) is

Q =
Ud1d2
d1 + d2

.

Find also the value of h(x) (i) where the pressure is maximum, (ii) where the tangential
viscous stress on the bottom y = 0 vanishes, and (iii) where the tangential viscous stress
on the top y = h(x) vanishes.

38D Waves
Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

for wave propagation through a slowly-varying medium with local dispersion relation
ω = Ω(k,x, t). The meaning of the notation d/dt should be carefully explained.

A non-dispersive slowly varying medium has a local wave speed c that depends only
on the z coordinate. State and prove Snell’s Law relating the angle ψ between a ray and
the z-axis to c.

Consider the case of a medium with wavespeed c = A cosh βz, where A and β
are positive constants. Find the equation of the ray that passes through the origin with
wavevector (k0, 0,m0), and show that it remains in the region β|z| 6 sinh−1(m0/k0).
Sketch several rays passing through the origin.
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39D Numerical Analysis

(i) The diffusion equation

∂u

∂t
=

∂2u

∂x2
, 0 6 x 6 1, t > 0 ,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and with zero boundary
conditions at x = 0 and x = 1, can be solved numerically by the method

un+1
m = unm + µ(unm−1 − 2unm + unm+1), m = 1, 2, . . . ,M, n > 0 ,

where ∆x = 1/(M + 1), µ = ∆t/(∆x)2, and unm ≈ u(m∆x, n∆t). Prove that
µ 6 1/2 implies convergence.

(ii) By discretising the diffusion equation and employing the same notation as in (i)
above, determine [without using Fourier analysis] conditions on µ and the constant
α such that the method

un+1
m − 1

2
(µ− α)(un+1

m−1 − 2un+1
m + un+1

m+1) = unm +
1

2
(µ + α)(unm−1 − 2unm + unm+1)

is stable.

END OF PAPER
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