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SECTION I

1I Number Theory
State and prove Gauss’s Lemma for the Legendre symbol

(
a
p

)
. For which odd primes

p is 2 a quadratic residue modulo p? Justify your answer.

2F Topics in Analysis
Show that sin(1) is irrational. [The angle is measured in radians.]

3G Geometry and Groups

Show that any pair of lines in hyperbolic 3-space that does not have a common

endpoint must have a common normal. Is this still true when the pair of lines does have

a common endpoint?

4H Coding and Cryptography
A binary Huffman code is used for encoding symbols 1, . . . ,m occurring with

respective probabilities p1 > · · · > pm > 0 where
∑

16j6m pj = 1. Let s1 be the length of a
shortest codeword and sm the length of a longest codeword. Determine the maximal and
minimal values of each of s1 and sm, and find binary trees for which they are attained.
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5J Statistical Modelling
Variables Y1, . . . , Yn are independent, with Yi having a density p(y |µi) governed by

an unknown parameter µi. Define the deviance for a model M that imposes relationships
between the (µi).

From this point on, suppose Yi ∼ Poisson(µi). Write down the log-likelihood of data
y1, . . . , yn as a function of µ1, . . . , µn.

Let µ̂i be the maximum likelihood estimate of µi under model M . Show that the
deviance for this model is given by

2
n∑

i=1

{
yi log

yi
µ̂i

− (yi − µ̂i)

}
.

Now suppose that, underM , log µi = βTxi, i = 1, . . . , n, where x1, . . . , xn are known
p-dimensional explanatory variables and β is an unknown p-dimensional parameter. Show
that µ̂ := (µ̂1, . . . , µ̂n)

T satisfies XTy = XTµ̂, where y = (y1, . . . , yn)
T and X is the (n×p)

matrix with rows xT1 , . . . , x
T
n , and express this as an equation for the maximum likelihood

estimate β̂ of β. [You are not required to solve this equation.]

6A Mathematical Biology
In a discrete-time model, a proportion µ of mature bacteria divides at each time

step. When a mature bacterium divides it is destroyed and two new immature bacteria
are produced. A proportion λ of the immature bacteria matures at each time step, and
a proportion k of mature bacteria dies at each time step. Show that this model may be
represented by the equations

at+1 = at + 2µbt − λat ,

bt+1 = bt − µbt + λat − kbt .

Give an expression for the general solution to these equations and show that the
population may grow if µ > k.

At time T , the population is treated with an antibiotic that completely stops
bacteria from maturing, but otherwise has no direct effects. Explain what will happen to
the population of bacteria afterwards, and give expressions for at and bt for t > T in terms
of aT , bT , µ and k.
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7C Dynamical Systems
Consider the dynamical system ẋ = f(x) in Rn which has a hyperbolic fixed point

at the origin.

Define the stable and unstable invariant subspaces of the system linearised about
the origin. Give a constraint on the dimensions of these two subspaces.

Define the local stable and unstable manifolds of the origin for the system. How are
these related to the invariant subspaces of the linearised system?

For the system

ẋ = −x+ x2 + y2 ,

ẏ = y + y2 − x2 ,

calculate the stable and unstable manifolds of the origin, each correct up to and including
cubic order.

8E Further Complex Methods
Prove that there are no second order linear ordinary homogeneous differential

equations for which all points in the extended complex plane are analytic.

Find all such equations which have one regular singular point at z = 0.

9B Classical Dynamics
Consider an n-dimensional dynamical system with generalized coordinates and

momenta (qi, pi), i = 1, 2, ..., n.

(a) Define the Poisson bracket {f, g} of two functions f(qi, pi, t) and g(qi, pi, t).

(b) Assuming Hamilton’s equations of motion, prove that if a function G(qi, pi) Poisson
commutes with the Hamiltonian, that is {G,H} = 0, then G is a constant of the
motion.

(c) Assume that qj is an ignorable coordinate, that is the Hamiltonian does not depend
on it explicitly. Using the formalism of Poisson brackets prove that the conjugate
momentum pj is conserved.
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10D Cosmology
The Friedmann equation and the fluid conservation equation for a closed isotropic

and homogeneous cosmology are given by

ȧ2

a2
=

8πGρ

3
− 1

a2
,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

where the speed of light is set equal to unity, G is the gravitational constant, a(t) is the
expansion scale factor, ρ is the fluid mass density and P is the fluid pressure, and overdots
denote differentiation with respect to the time coordinate t.

If the universe contains only blackbody radiation and a = 0 defines the zero of time
t, show that

a2(t) = t(t∗ − t) ,

where t∗ is a constant. What is the physical significance of the time t∗? What is the value
of the ratio a(t)/t at the time when the scale factor is largest? Sketch the curve of a(t)
and identify its geometric shape.

Briefly comment on whether this cosmological model is a good description of the
observed universe at any time in its history.
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SECTION II

11G Geometry and Groups

Define the modular group Γ acting on the upper half-plane.

Describe the set S of points z in the upper half-plane that have Im(T (z)) 6 Im(z)

for each T ∈ Γ. Hence find a fundamental set for Γ acting on the upper half-plane.

Let A and J be the two Möbius transformations

A : z 7→ z + 1 and J : z 7→ −1/z .

When is Im(J(z)) > Im(z)?

For any point z in the upper half-plane, show that either z ∈ S or else there is an

integer k with

Im(J(Ak(z))) > Im(z) .

Deduce that the modular group is generated by A and J .

12H Coding and Cryptography
Define the bar product C1|C2 of binary linear codes C1 and C2, where C2 is a subcode

of C1. Relate the rank and minimum distance of C1|C2 to those of C1 and C2 and justify
your answer. Show that if C⊥ denotes the dual code of C, then

(C1|C2)
⊥ = C⊥

2 |C⊥
1 .

Using the bar product construction, or otherwise, define the Reed–Muller code RM(d, r)
for 0 6 r 6 d. Show that if 0 6 r 6 d−1, then the dual of RM(d, r) is again a Reed–Muller
code.
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13J Statistical Modelling
A cricket ball manufacturing company conducts the following experiment. Every

day, a bowling machine is set to one of three levels, “Medium”, “Fast” or “Spin”, and
then bowls 100 balls towards the stumps. The number of times the ball hits the stumps
and the average wind speed (in kilometres per hour) during the experiment are recorded,
yielding the following data (abbreviated):

Day Wind Level Stumps

1 10 Medium 26

2 8 Medium 37
...

...
...

...

50 12 Medium 32

51 7 Fast 31
...

...
...

...

120 3 Fast 28

121 5 Spin 35
...

...
...

...

150 6 Spin 31

Write down a reasonable model for Y1, . . . , Y150, where Yi is the number of times the ball
hits the stumps on the ith day. Explain briefly why we might want to include interactions
between the variables. Write R code to fit your model.

The company’s statistician fitted her own generalized linear model using R, and
obtained the following summary (abbreviated):

>summary(ball)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Wind 0.09055 0.01595 5.676 1.38e-08 ***

LevelFast -0.10005 0.08044 -1.244 0.213570

LevelSpin 0.29881 0.08268 3.614 0.000301 ***

Wind:LevelFast 0.03666 0.02364 1.551 0.120933

Wind:LevelSpin -0.07697 0.02845 -2.705 0.006825 **

Why are LevelMedium and Wind:LevelMedium not listed?

Suppose that, on another day, the bowling machine is set to “Spin”, and the
wind speed is 5 kilometres per hour. What linear function of the parameters should
the statistician use in constructing a predictor of the number of times the ball hits the
stumps that day?

Based on the above output, how might you improve the model? How could you fit
your new model in R?
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14E Further Complex Methods
Show that the equation

(z − 1)w′′ − zw′ + (4− 2z)w = 0

has solutions of the form w(z) =
∫
γ exp (zt)f(t)dt, where

f(t) =
exp (−t)

(t− a)(t− b)2

and the contour γ is any closed curve in the complex plane, where a and b are real constants
which should be determined.

Use this to find the general solution, evaluating the integrals explicitly.
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15D Cosmology
A spherically symmetric star of total mass Ms has pressure P (r) and mass density

ρ(r), where r is the radial distance from its centre. These quantities are related by the
equations of hydrostatic equilibrium and mass conservation:

dP

dr
= −GM(r)ρ

r2
,

dM

dr
= 4πρr2 ,

where M(r) is the mass inside radius r.

By integrating from the centre of the star at r = 0, where P = Pc, to the surface of
the star at r = Rs, where P = Ps, show that

4πR3
sPs = Ω+ 3

∫ Ms

0

P

ρ
dM ,

where Ω is the total gravitational potential energy. Show that

−Ω >
GM2

s

2Rs
.

If the surface pressure is negligible and the star is a perfect gas of particles of mass
m with number density n and P = nkBT at temperature T , and radiation pressure can
be ignored, then show that

3

∫ Ms

0

P

ρ
dM =

3kB
m

T̄ ,

where T̄ is the mean temperature of the star, which you should define.

Hence, show that the mean temperature of the star satisfies the inequality

T̄ >
GMsm

6kBRs
.
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16G Logic and Set Theory
Write down the recursive definitions of ordinal addition, multiplication and expo-

nentiation.

Given that F : On → On is a strictly increasing function-class (i.e. α < β implies
F (α) < F (β)), show that α 6 F (α) for all α.

Show that every ordinal α has a unique representation in the form

α = ωα1.a1 + ωα2.a2 + · · ·+ ωαn.an ,

where n ∈ ω, α > α1 > α2 > · · · > αn, and a1, a2, . . . , an ∈ ω \ {0}.
Under what conditions can an ordinal α be represented in the form

ωβ1.b1 + ωβ2.b2 + · · ·+ ωβm.bm ,

where β1 < β2 < · · · < βm and b1, b2, . . . , bm ∈ ω \ {0}? Justify your answer.

[The laws of ordinal arithmetic (associative, distributive, etc.) may be assumed
without proof.]

17F Graph Theory

State and prove Hall’s theorem about matchings in bipartite graphs.

Show that a regular bipartite graph has a matching meeting every vertex.

A graph is almost r-regular if each vertex has degree r − 1 or r. Show that, if

r > 2, an almost r-regular graph G must contain an almost (r − 1)-regular graph H with

V (H) = V (G).

[Hint: First, if possible, remove edges from G whilst keeping it almost r-regular.]

18I Galois Theory
(i) Give an example of a field F , contained in C, such that X4 + 1 is a product of

two irreducible quadratic polynomials in F [X]. Justify your answer.

(ii) Let F be any extension of degree 3 over Q. Prove that the polynomial X4 + 1
is irreducible over F .

(iii) Give an example of a prime number p such that X4 + 1 is a product of two
irreducible quadratic polynomials in Fp[X]. Justify your answer.

[Standard facts on fields, extensions, and finite fields may be quoted without proof,
as long as they are stated clearly.]
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19G Representation Theory
State and prove Maschke’s Theorem for complex representations of finite groups.

Without using character theory, show that every irreducible complex representation
of the dihedral group of order 10, D10, has dimension at most two. List the irreducible
complex representations of D10 up to isomorphism.

Let V be the set of vertices of a regular pentagon with the usual action of D10.
Explicitly decompose the permutation representation CV into a direct sum of irreducible
subrepresentations.

20H Number Fields
Let f ∈ Z[X] be a monic irreducible polynomial of degree n. Let K = Q(α), where

α is a root of f .

(i) Show that if disc(f) is square-free then OK = Z[α].

(ii) In the case f(X) = X3 − 3X − 25 find the minimal polynomial of β = 3/(1−α) and
hence compute the discriminant of K. What is the index of Z[α] in OK?
[Recall that the discriminant of X3 + pX + q is −4p3 − 27q2.]

21G Algebraic Topology

(i) Define the notion of the fundamental group π1(X,x0) of a path-connected space X
with base point x0.

(ii) Prove that if a group G acts freely and properly discontinuously on a simply
connected space Z, then π1(G\Z, x0) is isomorphic to G. [You may assume the
homotopy lifting property, provided that you state it clearly.]

(iii) Suppose that p, q are distinct points on the 2-sphere S2 and that X = S2/(p ∼ q).
Exhibit a simply connected space Z with an action of a group G as in (ii) such that
X = G\Z, and calculate π1(X,x0).
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22F Linear Analysis
State and prove the Closed Graph Theorem. [You may assume any version of the

Baire Category Theorem provided it is clearly stated. If you use any other result from the
course, then you must prove it.]

Let X be a closed subspace of ℓ∞ such that X is also a subset of ℓ1. Show that
the left-shift L : X → ℓ1, given by L(x1, x2, x3, . . . ) = (x2, x3, . . . ), is bounded when X is
equipped with the sup-norm.

23I Riemann Surfaces
(i) Let f(z) =

∑∞
n=0 anz

n be a power series with radius of convergence r in (0,∞).
Show that there is at least one point a on the circle C = {z ∈ C : |z| = r}which is a singular
point of f , that is, there is no direct analytic continuation of f in any neighbourhood of a.

(ii) Let X and Y be connected Riemann surfaces. Define the space G of germs
of function elements of X into Y . Define the natural topology on G and the natural
map π : G → X. [You may assume without proof that the topology on G is Hausdorff.]
Show that π is continuous. Define the natural complex structure on G which makes it
into a Riemann surface. Finally, show that there is a bijection between the connected
components of G and the complete holomorphic functions of X into Y .

24H Algebraic Geometry
Let V ⊂ An be an affine variety over an algebraically closed field k. What does it

mean to say that V is irreducible? Show that any non-empty affine variety V ⊂ An is the
union of a finite number of irreducible affine varieties Vj ⊂ An.

Define the ideal I(V ) of V . Show that I(V ) is a prime ideal if and only if V is
irreducible.

Assume that the base field k has characteristic zero. Determine the irreducible
components of

V
(
X1X2, X1X3 +X2

2 − 1, X2
1 (X1 −X3)

)
⊂ A3 .
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25H Differential Geometry

For f : X → Y a smooth map of manifolds, define the concepts of critical point,

critical value and regular value.

With the obvious identification of C with R2, and hence also of C3 with R6, show

that the complex-valued polynomial z31 + z22 + z23 determines a smooth map f : R6 → R2

whose only critical point is at the origin. Hence deduce that V := f−1((0, 0)) \ {0} ⊂ R6

is a 4-dimensional manifold, and find the equations of its tangent space at any given point

(z1, z2, z3) ∈ V .

Now let S5 ⊂ C3 = R6 be the unit 5-sphere, defined by |z1|2 + |z2|2 + |z3|2 = 1.

Given a point P = (z1, z2, z3) ∈ S5∩V , by considering the vector (2z1, 3z2, 3z3) ∈ C3 = R6

or otherwise, show that not all tangent vectors to V at P are tangent to S5. Deduce that

S5 ∩ V ⊂ R6 is a compact three-dimensional manifold.

[Standard results may be quoted without proof if stated carefully.]

26K Probability and Measure
State Dynkin’s π-system/d-system lemma.

Let µ and ν be probability measures on a measurable space (E, E). Let A be a
π-system on E generating E . Suppose that µ(A) = ν(A) for all A ∈ A. Show that µ = ν.

What does it mean to say that a sequence of random variables is independent?

Let (Xn : n ∈ N) be a sequence of independent random variables, all uniformly
distributed on [0, 1]. Let Y be another random variable, independent of (Xn : n ∈ N).
Define random variables Zn in [0, 1] by Zn = (Xn + Y ) mod 1. What is the distribution
of Z1? Justify your answer.

Show that the sequence of random variables (Zn : n ∈ N) is independent.
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27J Applied Probability
Let (Xt, t > 0) be a Markov chain on {0, 1, . . .} with Q-matrix given by

qn,n+1 = λn ,

qn,0 = λnεn (n > 0) ,

qn,m = 0 if m /∈ {0, n, n + 1} ,

where εn, λn > 0.

(i) Show that X is transient if and only if
∑

n εn < ∞. [You may assume without proof
that x(1− δ) 6 log(1 + x) 6 x for all δ > 0 and all sufficiently small positive x.]

(ii) Assume that
∑

n εn < ∞. Find a necessary and sufficient condition for X to be
almost surely explosive. [You may assume without proof standard results about pure
birth processes, provided that they are stated clearly.]

(iii) Find a stationary measure for X. For the case λn = λ and εn = α/(n+1) (λ, α > 0),
show that X is positive recurrent if and only if α > 1.

28K Principles of Statistics
When the real parameter Θ takes value θ, variables X1,X2, . . . arise independently

from a distribution Pθ having density function pθ(x) with respect to an underlying
measure µ. Define the score variable Un(θ) and the information function In(θ) for
estimation of Θ based on Xn := (X1, . . . ,Xn), and relate In(θ) to i(θ) := I1(θ).

State and prove the Cramér–Rao inequality for the variance of an unbiased estimator
of Θ. Under what conditions does this inequality become an equality? What is the form
of the estimator in this case? [You may assume Eθ{Un(θ)} = 0, varθ{Un(θ)} = In(θ), and
any further required regularity conditions, without comment.]

Let Θ̂n be the maximum likelihood estimator of Θ based on Xn. What is the
asymptotic distribution of n

1
2 (Θ̂n −Θ) when Θ = θ?

Suppose that, for each n, Θ̂n is unbiased for Θ, and the variance of n
1
2 (Θ̂n − Θ) is

exactly equal to its asymptotic variance. By considering the estimator αΘ̂k + (1 − α)Θ̂n,
or otherwise, show that, for k < n, covθ(Θ̂k, Θ̂n) = varθ(Θ̂n).
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29J Stochastic Financial Models
(i) Suppose that the price St of an asset at time t is given by

St = S0 exp{σBt + (r − 1
2σ

2)t },

where B is a Brownian motion, S0 and σ are positive constants, and r is the riskless
rate of interest, assumed constant. In this model, explain briefly why the time-0 price of
a derivative which delivers a bounded random variable Y at time T should be given by
E(e−rTY ). What feature of this model ensures that the price is unique?

Derive an expression C(S0,K, T, r, σ) for the time-0 price of a European call option
with strike K and expiry T . Explain the italicized terms.

(ii) Suppose now that the price Xt of an asset at time t is given by

Xt =

n∑

j=1

wj exp{σjBt + (r − 1
2σ

2
j )t },

where the wj and σj are positive constants, and the other notation is as in part (i) above.
Show that the time-0 price of a European call option with strike K and expiry T written
on this asset can be expressed as

n∑

j=1

C(wj, kj , T, r, σj),

where the kj are constants. Explain how the kj are characterized.
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30C Partial Differential Equations
(i) Discuss briefly the concept of well-posedness of a Cauchy problem for a partial

differential equation.

Solve the Cauchy problem

∂2u+ x1∂1u = au2 , u(x1, 0) = φ(x1) ,

where a ∈ R, φ ∈ C1(R) and ∂i denotes the partial derivative with respect to xi for
i = 1, 2.

For the case a = 0 show that the solution satisfies max
x1∈R

|u(x1, x2)| = ‖φ‖C0 , where

the Cr norm on functions φ = φ(x1) of one variable is defined by

‖φ‖Cr =

r∑

i=0

max
x∈R

|∂i
1φ(x1)|.

Deduce that the Cauchy problem is then well-posed in the uniform metric (i.e. the metric
determined by the C0 norm).

(ii) State the Cauchy–Kovalevskaya theorem and deduce that the following Cauchy
problem for the Laplace equation,

∂2
1u+ ∂2

2u = 0 , u(x1, 0) = 0 , ∂2u(x1, 0) = φ(x1) , (∗)

has a unique analytic solution in some neighbourhood of x2 = 0 for any analytic function
φ = φ(x1). Write down the solution for the case φ(x1) = sin(nx1), and hence give a
sequence of initial data {φn(x1)}∞n=1 with the property that

‖φn‖Cr → 0 , as n → ∞, for each r ∈ N ,

whereas un, the corresponding solution of (∗), satisfies

max
x1∈R

|un(x1, x2)| → +∞ , as n → ∞,

for any x2 6= 0.
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31B Asymptotic Methods
Suppose α > 0. Define what it means to say that

F (x) ∼ 1

αx

∞∑

n=0

n!

(−1

αx

)n

is an asymptotic expansion of F (x) as x → ∞. Show that F (x) has no other asymptotic
expansion in inverse powers of x as x → ∞.

To estimate the value of F (x) for large x, one may use an optimal truncation of
the asymptotic expansion. Explain what is meant by this, and show that the error is an
exponentially small quantity in x.

Derive an integral respresentation for a function F (x) with the above asymptotic
expansion.

32C Integrable Systems
Quoting carefully all necessary results, use the theory of inverse scattering to derive

the 1-soliton solution of the KdV equation

ut = 6uux − uxxx .

33E Principles of Quantum Mechanics
Consider a composite system of several identical particles. Describe how the multi-

particle state is constructed from single-particle states. For the case of two identical
particles, describe how considering the interchange symmetry leads to the definition of
bosons and fermions.

Consider two non-interacting, identical particles, each with spin 1. The single-
particle, spin-independent Hamiltonian H(x̂i, p̂i) has non-degenerate eigenvalues En and
wavefunctions ψn(xi) where i = 1, 2 labels the particle and n = 0, 1, 2, 3, . . .. In terms of
these single-particle wavefunctions and single-particle spin states |1〉, |0〉 and | − 1〉, write
down all of the two-particle states and energies for:

(i) the ground state;

(ii) the first excited state.

Assume now that En is a linear function of n. Find the degeneracy of the N th

energy level of the two-particle system for:

(iii) N even;

(iv) N odd.
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34D Applications of Quantum Mechanics
Consider a quantum system with Hamiltonian Ĥ and energy levels

E0 < E1 < E2 < . . . .

For any state |ψ〉 define the Rayleigh–Ritz quotient R[ψ] and show the following:

(i) the ground state energy E0 is the minimum value of R[ψ];

(ii) all energy eigenstates are stationary points of R[ψ] with respect to variations of |ψ〉.
Under what conditions can the value of R[ψα] for a trial wavefunction ψα (depending

on some parameter α) be used as an estimate of the energy E1 of the first excited state?
Explain your answer.

For a suitably chosen trial wavefunction which is the product of a polynomial and a
Gaussian, use the Rayleigh–Ritz quotient to estimate E1 for a particle of mass m moving
in a potential V (x) = g|x|, where g is a constant.

[You may use the integral formulae,

∫ ∞

0
x2n exp

(
−px2

)
dx =

(2n − 1)!!

2(2p)n

√
π

p∫ ∞

0
x2n+1 exp

(
−px2

)
dx =

n!

2pn+1

where n is a non-negative integer and p is a constant. ]
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35A Statistical Physics
(i) What is the occupation number of a state i with energy Ei according to the Fermi–Dirac
statistics for a given chemical potential µ?

(ii) Assuming that the energy E is spin independent, what is the number gs of electrons
which can occupy an energy level?

(iii) Consider a semi-infinite metal slab occupying z 6 0 (and idealized to have infinite
extent in the xy plane) and a vacuum environment at z > 0. An electron with momentum
(px, py, pz) inside the slab will escape the metal in the +z direction if it has a sufficiently
large momentum pz to overcome a potential barrier V0 relative to the Fermi energy ǫF,
i.e. if

p2z
2m

> ǫF + V0 ,

where m is the electron mass.

At fixed temperature T , some fraction of electrons will satisfy this condition, which
results in a current density jz in the +z direction (an electron having escaped the metal
once is considered lost, never to return). Each electron escaping provides a contribution
δjz = −evz to this current density, where vz is the velocity and e the elementary charge.

(a) Briefly describe the Fermi–Dirac distribution as a function of energy in the limit
kBT ≪ ǫF, where kB is the Boltzmann constant. What is the chemical potential µ in this
limit?

(b) Assume that the electrons behave like an ideal, non-relativistic Fermi gas and that
kBT ≪ V0 and kBT ≪ ǫF. Calculate the current density jz associated with the electrons
escaping the metal in the +z direction. How could we easily increase the strength of the
current?
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36B Electrodynamics
(i) Starting from

Fµν =




0 E1/c E2/c E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0




and performing a Lorentz transformation with γ = 1/
√

1− u2/c2, using

Λµ
ν =




γ −γu/c 0 0
−γu/c γ 0 0

0 0 1 0
0 0 0 1


 ,

show how E and B transform under a Lorentz transformation.

(ii) By taking the limit c → ∞, obtain the behaviour of E and B under a
Galilei transfomation and verify the invariance under Galilei transformations of the non-
relativistic equation

m
dv

dt
= q(E+ v×B) .

(iii) Show that Maxwell’s equations admit solutions of the form

E = E0 f(t− n · x/c) , B = B0 f(t− n · x/c) , (⋆)

where f is an arbitrary function, n is a unit vector, and the constant vectors E0 and B0

are subject to restrictions which should be stated.

(iv) Perform a Galilei transformation of a solution (⋆), with n = (1, 0, 0). Show
that, by a particular choice of u, the solution may brought to the form

Ẽ = Ẽ0g(x̃) , B̃ = B̃0g(x̃) , (†)

where g is an arbitrary function and x̃ is a spatial coordinate in the rest frame. By
showing that (†) is not a solution of Maxwell’s equations in the boosted frame, conclude
that Maxwell’s equations are not invariant under Galilei transformations.
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37D General Relativity
The curve γ, xa = xa(λ), is a geodesic with affine parameter λ. Write down the

geodesic equation satisfied by xa(λ).

Suppose the parameter is changed to µ(λ), where dµ/dλ > 0. Obtain the
corresponding equation and find the condition for µ to be affine. Deduce that, whatever
parametrization ν is used along the curve γ, the tangent vector Ka to γ satisfies

(∇ν K)[aKb] = 0 .

Now consider a spacetime with metric gab, and conformal transformation

g̃ab = Ω2(xc)gab .

The curve γ is a geodesic of the metric connection of gab. What further restriction has to
be placed on γ so that it is also a geodesic of the metric connection of g̃ab? Justify your
answer.

38A Fluid Dynamics II
The velocity field u and stress tensor σ satisfy the Stokes equations in a volume V

bounded by a surface S. Let û be another solenoidal velocity field. Show that

∫

S
σijnjûi dS =

∫

V
2µeij êij dV ,

where e and ê are the strain-rates corresponding to the velocity fields u and û respectively,
and n is the unit normal vector out of V . Hence, or otherwise, prove the minimum
dissipation theorem for Stokes flow.

A particle moves at velocity U through a highly viscous fluid of viscosity µ contained
in a stationary vessel. As the particle moves, the fluid exerts a drag force F on it. Show
that

−F ·U =

∫

V
2µeijeij dV .

Consider now the case when the particle is a small cube, with sides of length ℓ, moving in
a very large vessel. You may assume that

F = −kµℓU ,

for some constant k. Use the minimum dissipation theorem, being careful to declare the
domain(s) involved, to show that

3π 6 k 6 3
√
3π.

[You may assume Stokes’ result for the drag on a sphere of radius a, F = −6πµaU.]
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39C Waves
Starting from the equations for the one-dimensional unsteady flow of a perfect gas

of uniform entropy, show that the Riemann invariants

R± = u± 2

γ − 1
(c− c0)

are constant on characteristics C± given by dx/dt = u± c, where u(x, t) is the velocity of
the gas, c(x, t) is the local speed of sound, c0 is a constant and γ is the ratio of specific
heats.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely
long tube. The gas and the piston are initially at rest with c = c0. At time t = 0 the
piston starts moving to the left at a constant velocity V . Find u(x, t) and c(x, t) in the
three regions

(i) c0t 6 x ,
(ii) at 6 x 6 c0t ,
(iii) −V t 6 x 6 at ,

where a = c0− 1
2(γ+1)V . What is the largest value of V for which c is positive throughout

region (iii)? What happens if V exceeds this value?

40C Numerical Analysis
Let

A(α) =




1 α α
α 1 α
α α 1


 , α ∈ R .

(i) For which values of α is A(α) positive definite?

(ii) Formulate the Gauss–Seidel method for the solution x ∈ R3 of a system

A(α)x = b ,

with A(α) as defined above and b ∈ R3. Prove that the Gauss–Seidel method
converges to the solution of the above system whenever A is positive definite. [You
may state and use the Householder–John theorem without proof.]

(iii) For which values of α does the Jacobi iteration applied to the solution of the above
system converge?

END OF PAPER
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