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SECTION I

1G Linear Algebra

State and prove the Steinitz Exchange Lemma. Use it to prove that, in a finite-

dimensional vector space: any two bases have the same size, and every linearly independent

set extends to a basis.

Let e1, . . . , en be the standard basis for Rn. Is e1 + e2, e2 + e3, e3 + e1 a basis for

R3? Is e1 + e2, e2 + e3, e3 + e4, e4 + e1 a basis for R4? Justify your answers.

2B Complex Analysis or Complex Methods
Let f(z) be an analytic/holomorphic function defined on an open set D, and let

z0 ∈ D be a point such that f ′(z0) 6= 0. Show that the transformation w = f(z) preserves
the angle between smooth curves intersecting at z0. Find such a transformation w = f(z)
that maps the second quadrant of the unit disc (i.e. |z| < 1, π/2 < arg(z) < π) to the
region in the first quadrant of the complex plane where |w| > 1 (i.e. the region in the first
quadrant outside the unit circle).

3F Geometry
Determine the second fundamental form of a surface in R3 defined by the parametri-

sation
σ(u, v) =

(
(a+ b cos u) cos v, (a+ b cos u) sin v, b sinu

)
,

for 0 < u < 2π, 0 < v < 2π, with some fixed a > b > 0. Show that the Gaussian curvature
K(u, v) of this surface takes both positive and negative values.

4C Variational Principles
Define the Legendre transform f∗(p) of a function f(x) where x ∈ Rn.

Show that for g(x) = λ f(x− x0)− µ,

g∗(p) = λf∗
(p
λ

)
+ pTx0 + µ.

Show that for f(x) = 1
2x

TAx where A is a real, symmetric, invertible matrix with
positive eigenvalues,

f∗(p) = 1
2p

TA−1 p.
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5B Fluid Dynamics
Constant density viscous fluid with dynamic viscosity µ flows in a two-dimensional

horizontal channel of depth h. There is a constant pressure gradient G > 0 in the horizontal
x−direction. The upper horizontal boundary at y = h is driven at constant horizontal
speed U > 0, with the lower boundary being held at rest. Show that the steady fluid
velocity u in the x−direction is

u =
−G

2µ
y(h− y) +

Uy

h
.

Show that it is possible to have du/dy < 0 at some point in the flow for sufficiently large
pressure gradient. Derive a relationship between G and U so that there is no net volume
flux along the channel. For the flow with no net volume flux, sketch the velocity profile.

6C Numerical Analysis
(i) A general multistep method for the numerical approximation to the scalar

differential equation y′ = f(t, y) is given by

s∑

ℓ=0

ρℓ yn+ℓ = h
s∑

ℓ=0

σℓfn+ℓ, n = 0, 1, . . .

where fn+ℓ = f(tn+ℓ, yn+ℓ). Show that this method is of order p > 1 if and only if

ρ(ez)− zσ(ez) = O(zp+1) as z → 0

where

ρ(w) =

s∑

ℓ=0

ρℓw
ℓ and σ(w) =

s∑

ℓ=0

σℓw
ℓ .

(ii) A particular three-step implicit method is given by

yn+3 + (a− 1)yn+1 − ayn = h

(
fn+3 +

2∑

ℓ=0

σℓfn+ℓ

)
.

where the σℓ are chosen to make the method third order. [The σℓ need not be found.] For
what values of a is the method convergent?
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7H Statistics
Consider an estimator θ̂ of an unknown parameter θ, and assume that Eθ

(
θ̂2
)
< ∞

for all θ. Define the bias and mean squared error of θ̂.

Show that the mean squared error of θ̂ is the sum of its variance and the square of
its bias.

Suppose that X1, . . . ,Xn are independent identically distributed random variables
with mean θ and variance θ2, and consider estimators of θ of the form kX̄ where
X̄ = 1

n

∑n
i=1Xi.

(i) Find the value of k that gives an unbiased estimator, and show that the mean
squared error of this unbiased estimator is θ2/n.

(ii) Find the range of values of k for which the mean squared error of kX̄ is smaller
than θ2/n.

8H Optimization
State and prove the Lagrangian sufficiency theorem.

Use the Lagrangian sufficiency theorem to find the minimum of 2x21 + 2x22 + x23
subject to x1 + x2 + x3 = 1 (where x1, x2 and x3 are real).

Part IB, Paper 1
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SECTION II

9G Linear Algebra

Let V be an n-dimensional real vector space, and let T be an endomorphism of V .

We say that T acts on a subspace W if T (W ) ⊂ W .

(i) For any x ∈ V , show that T acts on the linear span of {x, T (x), T 2(x), . . . , T n−1(x)}.
(ii) If {x, T (x), T 2(x), . . . , T n−1(x)} spans V , show directly (i.e. without using the Cayley–

Hamilton Theorem) that T satisfies its own characteristic equation.

(iii) Suppose that T acts on a subspace W with W 6= {0} and W 6= V . Let e1, . . . , ek be a

basis for W , and extend to a basis e1, . . . , en for V . Describe the matrix of T with respect

to this basis.

(iv) Using (i), (ii) and (iii) and induction, give a proof of the Cayley–Hamilton Theorem.

[Simple properties of determinants may be assumed without proof.]

10E Groups, Rings and Modules
Let G be a finite group and p a prime divisor of the order of G. Give the definition

of a Sylow p-subgroup of G, and state Sylow’s theorems.

Let p and q be distinct primes. Prove that a group of order p2q is not simple.

Let G be a finite group, H a normal subgroup of G and P a Sylow p-subgroup of
H. Let NG(P ) denote the normaliser of P in G. Prove that if g ∈ G then there exist
k ∈ NG(P ) and h ∈ H such that g = kh.

11F Analysis II
Define what it means for two norms on a real vector space V to be Lipschitz

equivalent. Show that if two norms on V are Lipschitz equivalent and F ⊂ V , then
F is closed in one norm if and only if F is closed in the other norm.

Show that if V is finite-dimensional, then any two norms on V are Lipschitz
equivalent.

Show that ‖f‖1 =
∫ 1
0 |f(x)|dx is a norm on the space C[0, 1] of continuous real-

valued functions on [0, 1]. Is the set S = {f ∈ C[0, 1] : f(1/2) = 0} closed in the norm
‖ · ‖1?

Determine whether or not the norm ‖ · ‖1 is Lipschitz equivalent to the uniform
norm ‖ · ‖∞ on C[0, 1].

[You may assume the Bolzano–Weierstrass theorem for sequences in Rn.]
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12E Metric and Topological Spaces
Define what it means for a topological space to be compact. Define what it means

for a topological space to be Hausdorff.

Prove that a compact subspace of a Hausdorff space is closed. Hence prove that if
C1 and C2 are compact subspaces of a Hausdorff space X then C1 ∩ C2 is compact.

A subset U of R is open in the cocountable topology if U is empty or its complement
in R is countable. Is R Hausdorff in the cocountable topology? Which subsets of R are
compact in the cocountable topology?

13B Complex Analysis or Complex Methods
By choice of a suitable contour show that for a > b > 0

∫ 2π

0

sin2 θdθ

a+ b cos θ
=

2π

b2

[
a−

√
a2 − b2

]
.

Hence evaluate

∫ 1

0

(1− x2)1/2x2dx

1 + x2

using the substitution x = cos(θ/2).

Part IB, Paper 1
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14D Methods
(a) Legendre’s differential equation may be written

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1) y = 0 , y(1) = 1 .

Show that for non-negative integer n, this equation has a solution Pn(x) that is a
polynomial of degree n. Find P0, P1 and P2 explicitly.

(b) Laplace’s equation in spherical coordinates for an axisymmetric function U(r, θ) (i.e. no
φ dependence) is given by

1

r2
∂

∂r

(
r2

∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
= 0 .

Use separation of variables to find the general solution for U(r, θ).

Find the solution U(r, θ) that satisfies the boundary conditions

U(r, θ) → v0 r cos θ as r → ∞ ,

∂U

∂r
= 0 at r = r0 ,

where v0 and r0 are constants.
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15A Quantum Mechanics
Consider a particle confined in a one-dimensional infinite potential well: V (x) = ∞

for |x| > a and V (x) = 0 for |x| < a. The normalised stationary states are

ψn(x) =




αn sin

(
πn(x+ a)

2a

)
for |x| < a

0 for |x| > a

where n = 1, 2, . . ..

(i) Determine the αn and the stationary states’ energies En.

(ii) A state is prepared within this potential well: ψ(x) ∝ x for 0 < x < a, but
ψ(x) = 0 for x 6 0 or x > a. Find an explicit expansion of ψ(x) in terms of ψn(x).

(iii) If the energy of the state is then immediately measured, show that the

probability that it is greater than ~2π2

ma2
is

4∑

n=0

bn
πn
,

where the bn are integers which you should find.

(iv) By considering the normalisation condition for ψ(x) in terms of the expansion
in ψn(x), show that

π2

3
=

∞∑

p=1

A

p2
+

B

(2p − 1)2

(
1 +

C(−1)p

(2p − 1)π

)2

,

where A, B and C are integers which you should find.
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16A Electromagnetism
The region z < 0 is occupied by an ideal earthed conductor and a point charge q

with mass m is held above it at (0, 0, d).

(i) What are the boundary conditions satisfied by the electric field E on the surface
of the conductor?

(ii) Consider now a system without the conductor mentioned above. A point charge
q with mass m is held at (0, 0, d), and one of charge −q is held at (0, 0, −d). Show
that the boundary condition on E at z = 0 is identical to the answer to (i). Explain why
this represents the electric field due to the charge at (0, 0, d) under the influence of the
conducting boundary.

(iii) The original point charge in (i) is released with zero initial velocity. Find the
time taken for the point charge to reach the plane (ignoring gravity).

[You may assume that the force on the point charge is equal to md2x/dt2, where x
is the position vector of the charge, and t is time.]
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17B Fluid Dynamics
Consider the purely two-dimensional steady flow of an inviscid incompressible

constant density fluid in the absence of body forces. For velocity u, the vorticity is
∇× u = ω = (0, 0, ω). Show that

u× ω = ∇
[
p

ρ
+

1

2
|u|2

]
,

where p is the pressure and ρ is the fluid density. Hence show that, if ω is a constant in
both space and time,

1

2
|u|2 + ω ψ +

p

ρ
= C,

where C is a constant and ψ is the streamfunction. Here, ψ is defined by u = ∇ × Ψ,
where Ψ = (0, 0, ψ).

Fluid in the annular region a < r < 2a has constant (in both space and time)
vorticity ω. The streamlines are concentric circles, with the fluid speed zero on r = 2a
and V > 0 on r = a. Calculate the velocity field, and hence show that

ω =
−2V

3a
.

Deduce that the pressure difference between the outer and inner edges of the annular
region is

∆p =

(
15− 16 ln 2

18

)
ρV 2.

[Hint: Note that in cylindrical polar coordinates (r, φ, z), the curl of a vector field

A(r, φ) = [a(r, φ), b(r, φ), c(r, φ)] is

∇×A =

[
1

r

∂c

∂φ
,−∂c

∂r
,
1

r

(
∂(rb)

∂r
− ∂a

∂φ

)]
. ]

Part IB, Paper 1



11

18C Numerical Analysis
Define a Householder transformation H and show that it is an orthogonal matrix.

Briefly explain how these transformations can be used for QR factorisation of an m × n
matrix.

Using Householder transformations, find a QR factorisation of

A =




2 5 4
2 5 1

−2 1 5
2 −1 16


 .

Using this factorisation, find the value of λ for which

Ax =




1 + λ
2
3
4




has a unique solution x ∈ R3.
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19H Statistics
Suppose that X1, X2, and X3 are independent identically distributed Poisson

random variables with expectation θ, so that

P(Xi = x) =
e−θθx

x!
x = 0, 1, . . . ,

and consider testing H0 : θ = 1 against H1 : θ = θ1, where θ1 is a known value greater
than 1. Show that the test with critical region {(x1, x2, x3) :

∑3
i=1 xi > 5} is a likelihood

ratio test of H0 against H1. What is the size of this test? Write down an expression for
its power.

A scientist counts the number of bird territories in n randomly selected sections
of a large park. Let Yi be the number of bird territories in the ith section, and
suppose that Y1, . . . , Yn are independent Poisson random variables with expectations
θ1, . . . , θn respectively. Let ai be the area of the ith section. Suppose that n = 2m,
a1 = · · · = am = a(> 0) and am+1 = · · · = a2m = 2a. Derive the generalised likelihood
ratio Λ for testing

H0 : θi = λai against H1 : θi =

{
λ1 i = 1, . . . ,m
λ2 i = m+ 1, . . . , 2m.

What should the scientist conclude about the number of bird territories if 2 loge(Λ)
is 15.67?

[Hint: Let Fθ(x) be P(W 6 x) where W has a Poisson distribution with expectation θ.
Then

F1(3) = 0.998, F3(5) = 0.916, F3(6) = 0.966, F5(3) = 0.433 .]

Part IB, Paper 1



13

20H Markov Chains
Consider a homogeneous Markov chain (Xn : n > 0) with state space S and transition
matrix P = (pi,j : i, j ∈ S). For a state i, define the terms aperiodic, positive recurrent
and ergodic.

Let S = {0, 1, 2, . . .} and suppose that for i > 1 we have pi,i−1 = 1 and

p0,0 = 0, p0,j = pqj−1, j = 1, 2, . . . ,

where p = 1− q ∈ (0, 1). Show that this Markov chain is irreducible.

Let T0 = inf{n > 1 : Xn = 0} be the first passage time to 0. Find P(T0 = n | X0 = 0) and
show that state 0 is ergodic.

Find the invariant distribution π for this Markov chain. Write down:

(i) the mean recurrence time for state i, i > 1;

(ii) limn→∞ P(Xn 6= 0 | X0 = 0).

[Results from the course may be quoted without proof, provided they are clearly stated.]

END OF PAPER
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