
MATHEMATICAL TRIPOS Part IB

Friday, 6 June, 2014 1:30 pm to 4:30 pm

PAPER 4

Before you begin read these instructions carefully.

Each question in Section II carries twice the number of marks of each question in

Section I. Candidates may attempt at most four questions from Section I and at

most six questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled A, B, . . . , H according to the

examiner letter affixed to each question, including in the same bundle questions

from Sections I and II with the same examiner letter.

Attach a completed gold cover sheet to each bundle.

You must also complete a green master cover sheet listing all the questions you have

attempted.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Gold cover sheets None

Green master cover sheet

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

SECTION I

1G Linear Algebra

Let V denote the vector space of all real polynomials of degree at most 2. Show

that

(f, g) =

∫ 1

−1
f(x)g(x) dx

defines an inner product on V .

Find an orthonormal basis for V .

2E Groups, Rings and Modules
Let G be the abelian group generated by elements a, b and c subject to the relations:

3a + 6b + 3c = 0, 9b + 9c = 0 and −3a + 3b + 6c = 0. Express G as a product of cyclic
groups. Hence determine the number of elements of G of order 3.

3F Analysis II
Define a contraction mapping and state the contraction mapping theorem.

Let C[0, 1] be the space of continuous real-valued functions on [0, 1] endowed with
the uniform norm. Show that the map A : C[0, 1] → C[0, 1] defined by

Af(x) =

∫ x

0
f(t)dt

is not a contraction mapping, but that A ◦ A is.

4G Complex Analysis

Let f be an entire function. State Cauchy’s Integral Formula, relating the nth

derivative of f at a point z with the values of f on a circle around z.

State Liouville’s Theorem, and deduce it from Cauchy’s Integral Formula.

Let f be an entire function, and suppose that for some k we have that |f(z)| 6 |z|k
for all z. Prove that f is a polynomial.
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5D Methods
Consider the ordinary differential equation

d2ψ

dz2
−

[
15k2

4(k|z| + 1)2
− 3kδ(z)

]
ψ = 0 , (†)

where k is a positive constant and δ denotes the Dirac delta function. Physically relevant
solutions for ψ are bounded over the entire range z ∈ R.

(i) Find piecewise bounded solutions to this differential equations in the ranges z > 0 and

z < 0, respectively. [Hint: The equation d2y
dx2 − c

x2 y = 0 for a constant c may be solved
using the Ansatz y = xα.]

(ii) Derive a matching condition at z = 0 by integrating (†) over the interval (−ǫ, ǫ) with
ǫ→ 0 and use this condition together with the requirement that ψ be continuous at z = 0
to determine the solution over the entire range z ∈ R.

6A Quantum Mechanics
For some quantum mechanical observable Q, prove that its uncertainty (∆Q)

satisfies
(∆Q)2 = 〈Q2〉 − 〈Q〉2.

A quantum mechanical harmonic oscillator has Hamiltonian

H =
p2

2m
+

mω2x2

2
,

where m > 0. Show that (in a stationary state of energy E)

E > (∆p)2

2m
+

mω2(∆x)2

2
.

Write down the Heisenberg uncertainty relation. Then, use it to show that

E > 1

2
~ω

for our stationary state.
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7A Electromagnetism
A continuous wire of resistance R is wound around a very long right circular cylinder

of radius a, and length l (long enough so that end effects can be ignored). There are N ≫ 1
turns of wire per unit length, wound in a spiral of very small pitch. Initially, the magnetic
field B is 0.

Both ends of the coil are attached to a battery of electromotance E0 at t = 0, which
induces a current I(t). Use Ampère’s law to derive B inside and outside the cylinder
when the displacement current may be neglected. Write the self-inductance of the coil L
in terms of the quantities given above. Using Ohm’s law and Faraday’s law of induction,
find I(t) explicitly in terms of E0, R, L and t.

8C Numerical Analysis
Consider the quadrature given by

∫ π

0
w(x)f(x)dx ≈

ν∑

k=1

bkf(ck)

for ν ∈ N, disjoint ck ∈ (0, π) and w > 0 . Show that it is not possible to make this
quadrature exact for all polynomials of order 2ν.

For the case that ν = 2 and w(x) = sinx, by considering orthogonal polynomials
find suitable bk and ck that make the quadrature exact on cubic polynomials.

[Hint:
∫ π
0 x2 sinx dx = π2 − 4 and

∫ π
0 x3 sinx dx = π3 − 6π.]
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9H Markov Chains
Let (Xn : n > 0) be a homogeneous Markov chain with state space S and transition

matrix P = (pi,j : i, j ∈ S).

(a) Let Wn = X2n, n = 0, 1, 2, . . .. Show that (Wn : n > 0) is a Markov chain and give
its transition matrix. If λi = P(X0 = i), i ∈ S, find P(W1 = 0) in terms of the λi

and the pi,j.

[Results from the course may be quoted without proof, provided they are clearly
stated.]

(b) Suppose that S = {−1, 0, 1}, p0,1 = p−1,−1 = 0 and p−1,0 6= p1,0. Let Yn = |Xn|,
n = 0, 1, 2, . . .. In terms of the pi,j, find

(i) P(Yn+1 = 0 | Yn = 1, Yn−1 = 0) and

(ii) P(Yn+1 = 0 | Yn = 1, Yn−1 = 1, Yn−2 = 0).

What can you conclude about whether or not (Yn : n > 0) is a Markov chain?
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SECTION II

10G Linear Algebra

Let V be a real vector space. What is the dual V ∗ of V ? If e1, . . . , en is a basis for

V , define the dual basis e∗1, . . . , e
∗
n for V ∗, and show that it is indeed a basis for V ∗.

[No result about dimensions of dual spaces may be assumed.]

For a subspace U of V , what is the annihilator of U? If V is n-dimensional, how

does the dimension of the annihilator of U relate to the dimension of U?

Let α : V → W be a linear map between finite-dimensional real vector spaces.

What is the dual map α∗? Explain why the rank of α∗ is equal to the rank of α. Prove

that the kernel of α∗ is the annihilator of the image of α, and also that the image of α∗ is

the annihilator of the kernel of α.

[Results about the matrices representing a map and its dual may be used without

proof, provided they are stated clearly.]

Now let V be the vector space of all real polynomials, and define elements L0, L1, . . .

of V ∗ by setting Li(p) to be the coefficient of Xi in p (for each p ∈ V ). Do the Li form a

basis for V ∗?

11E Groups, Rings and Modules
(a) Consider the four following types of rings: Principal Ideal Domains, Integral

Domains, Fields, and Unique Factorisation Domains. Arrange them in the form A =⇒
B =⇒ C =⇒ D (where A =⇒ B means if a ring is of type A then it is of type B).

Prove that these implications hold. [You may assume that irreducibles in a Principal
Ideal Domain are prime.] Provide examples, with brief justification, to show that these
implications cannot be reversed.

(b) Let R be a ring with ideals I and J satisfying I ⊆ J . Define K to be the set
{r ∈ R : rJ ⊆ I}. Prove that K is an ideal of R. If J and K are principal, prove that I
is principal.
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12F Analysis II
Let U ⊂ R2 be an open set. Define what it means for a function f : U → R to be

differentiable at a point (x0, y0) ∈ U .

Prove that if the partial derivatives D1f and D2f exist on U and are continuous at
(x0, y0), then f is differentiable at (x0, y0).

If f is differentiable on U must D1f , D2f be continuous at (x0, y0)? Give a proof
or counterexample as appropriate.

The function h : R2 → R is defined by

h(x, y) = xy sin(1/x) for x 6= 0, h(0, y) = 0.

Determine all the points (x, y) at which h is differentiable.

13E Metric and Topological Spaces
Explain what it means for a metric space to be complete.

Let X be a metric space. We say the subsets Ai of X, with i ∈ N, form a descending
sequence in X if A1 ⊃ A2 ⊃ A3 ⊃ · · · .

Prove that the metric space X is complete if and only if any descending sequence
A1 ⊃ A2 ⊃ · · · of non-empty closed subsets of X, such that the diameters of the subsets
Ai converge to zero, has an intersection

⋂∞
i=1Ai that is non-empty.

[Recall that the diameter diam(S) of a set S is the supremum of the set {d(x, y) :
x, y ∈ S}.]

Give examples of
(i) a metric space X, and a descending sequence A1 ⊃ A2 ⊃ · · · of non-empty closed
subsets of X, with diam(Ai) converging to 0 but

⋂∞
i=1 Ai = ∅.

(ii) a descending sequence A1 ⊃ A2 ⊃ · · · of non-empty sets in R with diam(Ai) converging
to 0 but

⋂∞
i=1 Ai = ∅.

(iii) a descending sequence A1 ⊃ A2 ⊃ · · · of non-empty closed sets in R with
⋂∞

i=1Ai = ∅.
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14B Complex Methods
Find the Laplace transforms of tn for n a positive integer and H(t− a) where a > 0

and H(t) is the Heaviside step function.

Consider a semi-infinite string which is initially at rest and is fixed at one end. The
string can support wave-like motions, and for t > 0 it is allowed to fall under gravity.
Therefore the deflection y(x, t) from its initial location satisfies

∂2

∂t2
y = c2

∂2

∂x2
y + g for x > 0, t > 0

with

y(0, t) = y(x, 0) =
∂

∂t
y(x, 0) = 0 and y(x, t) → gt2

2
as x → ∞,

where g is a constant. Use Laplace transforms to find y(x, t).

[The convolution theorem for Laplace transforms may be quoted without proof.]

15F Geometry
Define an embedded parametrised surface in R3. What is the Riemannian metric

induced by a parametrisation? State, in terms of the Riemannian metric, the equations
defining a geodesic curve γ : (0, 1) → S, assuming that γ is parametrised by arc-length.

Let S be a conical surface

S = {(x, y, z) ∈ R3 : 3(x2 + y2) = z2, z > 0}.

Using an appropriate smooth parametrisation, or otherwise, prove that S is locally
isometric to the Euclidean plane. Show that any two points on S can be joined by a
geodesic. Is this geodesic always unique (up to a reparametrisation)? Justify your answer.

[The expression for the Euclidean metric in polar coordinates on R2 may be used
without proof.]
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16C Variational Principles
Consider the integral

I =

∫
f(y, y′)dx.

Show that if f satisfies the Euler–Lagrange equation, then

f − y′
∂f

∂y′
= constant.

An axisymmetric soap film y(x) is formed between two circular wires at x = ±l.
The wires both have radius r. Show that the shape that minimises the surface area takes
the form

y(x) = k cosh
x

k
.

Show that there exist two possible k that satisfy the boundary conditions for r/l
sufficiently large.

Show that for these solutions the second variation is given by

δ2I = π

∫ +l

−l

(
kη′2 − 1

k
η2
)
sech2

(x
k

)
dx

where η is an axisymmetric perturbation with η(±l) = 0.

17D Methods
Let f(x) be a complex-valued function defined on the interval [−L,L] and periodically
extended to x ∈ R.

(i) Express f(x) as a complex Fourier series with coefficients cn, n ∈ Z. How are the
coefficients cn obtained from f(x)?

(ii) State Parseval’s theorem for complex Fourier series.

(iii) Consider the function f(x) = cos(αx) on the interval [−π, π] and periodically extended
to x ∈ R for a complex but non-integer constant α. Calculate the complex Fourier series
of f(x).

(iv) Prove the formula
∞∑

n=1

1

n2 − α2
=

1

2α2
− π

2α tan(απ)
.

(v) Now consider the case where α is a real, non-integer constant. Use Parseval’s theorem
to obtain a formula for ∞∑

n=−∞

1

(n2 − α2)2
.

What value do you obtain for this series for α = 5/2?
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18B Fluid Dynamics
Consider a layer of fluid of constant density ρ and equilibrium depth h0 in a rotating

frame of reference, rotating at constant angular velocity Ω about the vertical z-axis. The
equations of motion are

∂u

∂t
− fv = −1

ρ

∂p

∂x
,

∂v

∂t
+ fu = −1

ρ

∂p

∂y
,

0 = −∂p

∂z
− ρg,

where p is the fluid pressure, u and v are the fluid velocities in the x-direction and y-
direction respectively, f = 2Ω, and g is the constant acceleration due to gravity. You may
also assume that the horizontal extent of the layer is sufficiently large so that the layer
may be considered to be shallow, such that vertical velocities may be neglected.

By considering mass conservation, show that the depth h(x, y, t) of the layer satisfies

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0.

Now assume that h = h0 + η(x, y, t), where |η| ≪ h0. Show that the (linearised) potential
vorticity Q = Qẑ, defined by

Q = ζ − η
f

h0
, where ζ =

∂v

∂x
− ∂u

∂y

and ẑ is the unit vector in the vertical z-direction, is a constant in time, i.e. Q = Q0(x, y).

When Q0 = 0 everywhere, establish that the surface perturbation η satisfies

∂2η

∂t2
− gh0

(
∂2η

∂x2
+

∂2η

∂y2

)
+ f2η = 0,

and show that this equation has wave-like solutions η = η0 cos[k(x− ct)] when c and k are
related through a dispersion relation to be determined. Show that, to leading order, the
trajectories of fluid particles for these waves are ellipses. Assuming that η0 > 0, k > 0,
c > 0 and f > 0, sketch the fluid velocity when k(x− ct) = nπ/2 for n = 0, 1, 2, 3.
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19H Statistics
Consider a linear model

Y = Xβ + ε, (†)
where X is a known n× p matrix, β is a p× 1 (p < n) vector of unknown parameters and
ε is an n× 1 vector of independent N(0, σ2) random variables with σ2 unknown. Assume
that X has full rank p. Find the least squares estimator β̂ of β and derive its distribution.
Define the residual sum of squares RSS and write down an unbiased estimator σ̂2 of σ2.

Suppose that Vi = a+ bui+ δi and Zi = c+ dwi+ ηi, for i = 1, . . . ,m, where ui and
wi are known with

∑m
i=1 ui =

∑m
i=1 wi = 0, and δ1, . . . , δm, η1, . . . , ηm are independent

N(0, σ2) random variables. Assume that at least two of the ui are distinct and at least
two of the wi are distinct. Show that Y = (V1, . . . , Vm, Z1, . . . , Zm)T (where T denotes
transpose) may be written as in (†) and identify X and β. Find β̂ in terms of the Vi, Zi,
ui and wi. Find the distribution of b̂− d̂ and derive a 95% confidence interval for b− d.

[Hint: You may assume that RSS
σ2 has a χ2

n−p distribution, and that β̂ and the
residual sum of squares are independent. Properties of χ2 distributions may be used without
proof.]
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20H Optimization
Consider a network with a single source and a single sink, where all the edge

capacities are finite. Write down the maximum flow problem, and state the max-flow
min-cut theorem.

Describe the Ford–Fulkerson algorithm. If all edge capacities are integers, explain
why, starting from a suitable initial flow, the algorithm is guaranteed to end after a finite
number of iterations.

The graph in the diagram below represents a one-way road network taking traffic
from point A to point B via five roundabouts Ri, i = 1, . . . , 5. The capacity of each road
is shown on the diagram in terms of vehicles per minute. Assuming that all roundabouts
can deal with arbitrary amounts of flow of traffic, find the maximum flow of traffic (in
vehicles per minute) through this network of roads. Show that this flow is indeed optimal.

After a heavy storm, roundabout R2 is flooded and only able to deal with at most
20 vehicles per minute. Find a suitable new network for the situation after the storm.
Apply the Ford–Fulkerson algorithm to the new network, starting with the zero flow and
explaining each step, to determine the maximum flow and the associated flows on each
road.
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