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SECTION I

1F Groups, Rings and Modules
State two equivalent conditions for a commutative ring to be Noetherian, and prove

they are equivalent. Give an example of a ring which is not Noetherian, and explain why
it is not Noetherian.

2G Analysis II
Define what is meant by a uniformly continuous function f on a subset E of a metric

space. Show that every continuous function on a closed, bounded interval is uniformly
continuous. [You may assume the Bolzano–Weierstrass theorem.]

Suppose that a function g : [0,∞) → R is continuous and tends to a finite limit
at ∞. Is g necessarily uniformly continuous on [0,∞)? Give a proof or a counterexample
as appropriate.

3E Metric and Topological Spaces
Define what it means for a topological spaceX to be (i) connected (ii) path-connected.

Prove that any path-connected space X is connected. [You may assume the interval
[0, 1] is connected.]

Give a counterexample (without justification) to the converse statement.

4B Complex Methods
Find the Fourier transform of the function

f(x) =
1

1 + x2
, x ∈ R,

using an appropriate contour integration. Hence find the Fourier transform of its
derivative, f ′(x), and evaluate the integral

I =

∫ ∞

−∞

4x2

(1 + x2)4
dx·
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5F Geometry
State the sine rule for spherical triangles.

Let ∆ be a spherical triangle with vertices A, B, and C, with angles α, β and γ
at the respective vertices. Let a, b, and c be the lengths of the edges BC, AC and AB
respectively. Show that b = c if and only if β = γ. [You may use the cosine rule for
spherical triangles.] Show that this holds if and only if there exists a reflection M such
that M(A) = A, M(B) = C and M(C) = B.

Are there equilateral triangles on the sphere? Justify your answer.

6A Variational Principles
(a) Define what it means for a function f : Rn → R to be convex.

(b) Define the Legendre transform f∗(p) of a convex function f(x), where x ∈ R.
Show that f∗(p) is a convex function.

(c) Find the Legendre transform f∗(p) of the function f(x) = ex, and the domain
of f∗.

7C Methods
(a) From the defining property of the δ function,

∫ ∞

−∞
δ(x) f(x) dx = f(0) ,

for any function f , prove that

(i) δ(−x) = δ(x),

(ii) δ(ax) = |a|−1δ(x) for a ∈ R, a 6= 0,

(iii) If g : R → R, x 7→ g(x) is smooth and has isolated zeros xi where the derivative
g′(xi) 6= 0, then

δ[g(x)] =
∑

i

δ(x− xi)

|g′(xi)|
.

(b) Show that the function γ(x) defined by

γ(x) = lim
s→0

ex/s

s
(
1 + ex/s

)2 ,

is the δ(x) function.
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8D Quantum Mechanics
A quantum-mechanical system has normalised energy eigenstates χ1 and χ2 with

non-degenerate energies E1 and E2 respectively. The observable A has normalised
eigenstates,

φ1 = C(χ1 + 2χ2) , eigenvalue = a1 ,

φ2 = C(2χ1 − χ2) , eigenvalue = a2 ,

where C is a positive real constant. Determine C.

Initially, at time t = 0, the state of the system is φ1. Write down an expression for
ψ(t), the state of the system with t > 0. What is the probability that a measurement of
energy at time t will yield E2?

For the same initial state, determine the probability that a measurement of A at
time t > 0 will yield a1 and the probability that it will yield a2.

9H Markov Chains
Define what is meant by a communicating class and a closed class in a Markov chain.

A Markov chain (Xn : n > 0) with state space {1, 2, 3, 4} has transition matrix

P =




1
2 0 1

2 0

0 1
2 0 1

2

1
2 0 1

2 0

1
2 0 0 1

2




.

Write down the communicating classes for this Markov chain and state whether or not
each class is closed.

If X0 = 2, let N be the smallest n such that Xn 6= 2. Find P(N = n) for n = 1, 2, . . .
and E(N). Describe the evolution of the chain if X0 = 2.
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SECTION II

10E Linear Algebra
Let A1, A2, . . . , Ak be n × n matrices over a field F. We say A1, A2, . . . , Ak are

simultaneously diagonalisable if there exists an invertible matrix P such that P−1AiP is
diagonal for all 1 6 i 6 k. We say the matrices are commuting if AiAj = AjAi for all i, j.

(i) Suppose A1, A2, . . . , Ak are simultaneously diagonalisable. Prove that they are
commuting.

(ii) Define an eigenspace of a matrix. Suppose B1, B2, . . . , Bk are commuting n× n
matrices over a field F. Let E denote an eigenspace of B1. Prove that Bi(E) 6 E for all i.

(iii) Suppose B1, B2, . . . , Bk are commuting diagonalisable matrices. Prove that
they are simultaneously diagonalisable.

(iv) Are the 2 × 2 diagonalisable matrices over C simultaneously diagonalisable?
Explain your answer.

11F Groups, Rings and Modules
Can a group of order 55 have 20 elements of order 11? If so, give an example. If

not, give a proof, including the proof of any statements you need.

Let G be a group of order pq, with p and q primes, p > q. Suppose furthermore
that q does not divide p− 1. Show that G is cyclic.

12G Analysis II
Define what it means for a function f : Rn → Rm to be differentiable at x ∈ Rn

with derivative Df(x).

State and prove the chain rule for the derivative of g ◦ f , where g : Rm → Rp is a
differentiable function.

Now let f : R2 → R be a differentiable function and let g(x) = f(x, c − x) where
c is a constant. Show that g is differentiable and find its derivative in terms of the
partial derivatives of f . Show that if D1f(x, y) = D2f(x, y) holds everywhere in R2, then
f(x, y) = h(x+ y) for some differentiable function h.
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13G Complex Analysis
State the argument principle.

Let U ⊂ C be an open set and f : U → C a holomorphic injective function. Show
that f ′(z) 6= 0 for each z in U and that f(U) is open.

Stating clearly any theorems that you require, show that for each a ∈ U and a
sufficiently small r > 0,

g(w) =
1

2πi

∫

|z−a|=r

zf ′(z)
f(z)− w

dz

defines a holomorphic function on some open disc D about f(a).

Show that g is the inverse for the restriction of f to g(D).

14F Geometry
Let T : C∞ → C∞ be a Möbius transformation on the Riemann sphere C∞.

(i) Show that T has either one or two fixed points.

(ii) Show that if T is a Möbius transformation corresponding to (under stereographic
projection) a rotation of S2 through some fixed non-zero angle, then T has two fixed points,
z1, z2, with z2 = −1/z̄1.

(iii) Suppose T has two fixed points z1, z2 with z2 = −1/z̄1. Show that either T
corresponds to a rotation as in (ii), or one of the fixed points, say z1, is attractive, i.e.
T nz → z1 as n → ∞ for any z 6= z2.
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15C Methods
(i) Consider the Poisson equation ∇2ψ(r) = f(r) with forcing term f on the infinite

domain R3 with lim|r|→∞ψ = 0. Derive the Green’s function G(r, r′) = −1/(4π|r − r′|)
for this equation using the divergence theorem. [You may assume without proof that the
divergence theorem is valid for the Green’s function.]

(ii) Consider the Helmholtz equation

∇2ψ(r) + k2ψ(r) = f(r) , (†)

where k is a real constant. A Green’s function g(r, r′) for this equation can be constructed
from G(r, r′) of (i) by assuming g(r, r′) = U(r)G(r, r′) where r = |r − r′| and U(r) is a
regular function. Show that limr→0 U(r) = 1 and that U satisfies the equation

d2U

dr2
+ k2U(r) = 0 . (‡)

(iii) Take the Green’s function with the specific solution U(r) = eikr to Eq. (‡) and
consider the Helmholtz equation (†) on the semi-infinite domain z > 0, x, y ∈ R. Use
the method of images to construct a Green’s function for this problem that satisfies the
boundary conditions

∂g

∂z′
= 0 on z′ = 0 and lim

|r|→∞
g(r, r′) = 0 .

(iv) A solution to the Helmholtz equation on a bounded domain can be constructed
in complete analogy to that of the Poisson equation using the Green’s function in Green’s
3rd identity

ψ(r) =

∫

∂V

[
ψ(r′)

∂g(r, r′)
∂n′

− g(r, r′)
∂ψ(r′)
∂n′

]
dS′ +

∫

V
f(r′)g(r, r′)dV ′ ,

where V denotes the volume of the domain, ∂V its boundary and ∂/∂n′ the outgoing
normal derivative on the boundary. Now consider the homogeneous Helmholtz equation
∇2ψ(r) + k2ψ(r) = 0 on the domain z > 0, x, y ∈ R with boundary conditions ψ(r) = 0
at |r| → ∞ and

∂ψ

∂z

∣∣∣∣
z=0

=

{
0 for ρ > a

A for ρ 6 a

where ρ =
√
x2 + y2 and A and a are real constants. Construct a solution in integral form

to this equation using cylindrical coordinates (z, ρ, ϕ) with x = ρ cosϕ, y = ρ sinϕ.
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16D Quantum Mechanics
Define the angular momentum operators L̂i for a particle in three dimensions in

terms of the position and momentum operators x̂i and p̂i = −i~ ∂
∂xi

. Write down an

expression for [L̂i, L̂j ] and use this to show that [L̂2, L̂i] = 0 where L̂2 = L̂2
x + L̂2

y + L̂2
z.

What is the significance of these two commutation relations?

Let ψ(x, y, z) be both an eigenstate of L̂z with eigenvalue zero and an eigenstate of
L̂2 with eigenvalue ~2l(l+1). Show that (L̂x + iL̂y)ψ is also an eigenstate of both L̂z and
L̂2 and determine the corresponding eigenvalues.

Find real constants A and B such that

φ(x, y, z) =
(
Az2 +By2 − r2

)
e−r , r2 = x2 + y2 + z2 ,

is an eigenfunction of L̂z with eigenvalue zero and an eigenfunction of L̂2 with an eigenvalue
which you should determine. [Hint: You might like to show that L̂i f(r) = 0.]

17A Electromagnetism
A charge density ρ = λ/r fills the region of 3-dimensional space a < r < b, where

r is the radial distance from the origin and λ is a constant. Compute the electric field in
all regions of space in terms of Q, the total charge of the region. Sketch a graph of the
magnitude of the electric field versus r (assuming that Q > 0).

Now let ∆ = b − a → 0. Derive the surface charge density σ in terms of ∆, a and
λ and explain how a finite surface charge density may be obtained in this limit. Sketch
the magnitude of the electric field versus r in this limit. Comment on any discontinuities,
checking a standard result involving σ for this particular case.

A second shell of equal and opposite total charge is centred on the origin and has a
radius c < a. Sketch the electric potential of this system, assuming that it tends to 0 as
r → ∞.
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18B Fluid Dynamics
A source of sound induces a travelling wave of pressure above the free surface of a

fluid located in the z < 0 domain as

p = patm + p0 cos(kx− ωt),

with p0 ≪ patm. Here k and ω are fixed real numbers. We assume that the flow induced
in the fluid is irrotational.

(i) State the linearized equation of motion for the fluid and the free surface,
z = h(x, t), with all boundary conditions.

(ii) Solve for the velocity potential, φ(x, z, t), and the height of the free surface,
h(x, t). Verify that your solutions are dimensionally correct.

(iii) Interpret physically the behaviour of the solution when ω2 = gk.

19D Numerical Analysis
Define the QR factorization of an m × n matrix A. Explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ||Ax − b||,
where b ∈ Rm, m > n, and || · || is the Euclidean norm.

Explain how to construct Q and R by the Gram-Schmidt procedure. Why is this
procedure not useful for numerical factorization of large matrices?

Let

A =




5 6 −14
5 4 4

−5 2 −8
5 12 −18


 , b =




1
1
1
0


 .

Using the Gram-Schmidt procedure find a QR decomposition of A. Hence solve the least
squares problem giving both x∗ and ||Ax∗ − b||.
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20H Statistics
(a) Suppose that X1, . . . ,Xn are independent identically distributed random vari-

ables, each with density f(x) = θ exp(−θx), x > 0 for some unknown θ > 0. Use the
generalised likelihood ratio to obtain a size α test of H0 : θ = 1 against H1 : θ 6= 1.

(b) A die is loaded so that, if pi is the probability of face i, then p1 = p2 = θ1,
p3 = p4 = θ2 and p5 = p6 = θ3. The die is thrown n times and face i is observed xi times.
Write down the likelihood function for θ = (θ1, θ2, θ3) and find the maximum likelihood
estimate of θ.

Consider testing whether or not θ1 = θ2 = θ3 for this die. Find the generalised
likelihood ratio statistic Λ and show that

2 loge Λ ≈ T, where T =

3∑

i=1

(oi − ei)
2

ei
,

where you should specify oi and ei in terms of x1, . . . , x6. Explain how to obtain an
approximate size 0.05 test using the value of T . Explain what you would conclude (and
why) if T = 2.03.

21H Optimization
Consider the linear programming problem P :

minimise cTx subject to Ax > b, x > 0,

where x and c are in Rn, A is a real m × n matrix, b is in Rm and T denotes transpose.
Derive the dual linear programming problem D. Show from first principles that the dual
of D is P .

Suppose that cT = (6, 10, 11), bT = (1, 1, 3) and A =




1 3 8
1 1 2
2 4 4


. Write down

the dual D and find the optimal solution of the dual using the simplex algorithm. Hence,
or otherwise, find the optimal solution x∗ = (x∗1, x

∗
2, x

∗
3) of P .

Suppose that c is changed to c̃ = (6 + ε1, 10 + ε2, 11 + ε3). Give necessary and
sufficient conditions for x∗ still to be the optimal solution of P . If ε1 = ε2 = 0, find the
range of values for ε3 for which x∗ is still the optimal solution of P .

END OF PAPER
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