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SECTION I

1F Linear Algebra
State and prove the Steinitz Exchange Lemma.

Deduce that, for a subset S of Rn, any two of the following imply the third:

(i) S is linearly independent

(ii) S is spanning

(iii) S has exactly n elements

Let e1, e2 be a basis of R2. For which values of λ do λe1+ e2, e1+λe2 form a basis of R2?

2A Complex Analysis or Complex Methods
Let F (z) = u(x, y)+i v(x, y) where z = x+i y. Suppose F (z) is an analytic function

of z in a domain D of the complex plane.

Derive the Cauchy-Riemann equations satisfied by u and v.

For u =
x

x2 + y2
find a suitable function v and domain D such that F = u + i v is

analytic in D.

3G Geometry
Give the definition for the area of a hyperbolic triangle with interior angles α, β, γ.

Let n > 3. Show that the area of a convex hyperbolic n-gon with interior angles
α1, . . . , αn is (n − 2)π −

∑

αi.

Show that for every n > 3 and for every A with 0 < A < (n−2)π there exists a regu-
lar hyperbolic n-gon with area A.
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4D Variational Principles
Derive the Euler-Lagrange equation for the function u(x, y) that gives a stationary

value of

I[u] =

∫

D
L

(

x, y, u,
∂u

∂x
,
∂u

∂y

)

dx dy,

where D is a bounded domain in the (x, y)-plane and u is fixed on the boundary ∂D.

Find the equation satisfied by the function u that gives a stationary value of

I =

∫

D

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+ k2u2

]

dx dy,

where k is a constant and u is prescribed on ∂D.

5D Fluid Dynamics
For each of the flows

(i) u = (2xy, x2 + y2)

(ii) u = (−2y,−2x)

determine whether or not the flow is incompressible and/or irrotational. Find the
associated velocity potential and/or stream function when appropriate. For either one of
the flows, sketch the streamlines of the flow, indicating the direction of the flow.

6C Numerical Analysis
Given n+1 real points x0 < x1 < · · · < xn, define the Lagrange cardinal polynomials

ℓi(x), i = 0, 1, . . . , n. Let p(x) be the polynomial of degree n that interpolates the
function f ∈ Cn[x0, xn] at these points. Express p(x) in terms of the values fi = f(xi),
i = 0, 1, . . . , n and the Lagrange cardinal polynomials.

Define the divided difference f [x0, x1, . . . , xn] and give an expression for it in terms
of f0, f1, . . . , fn and x0, x1, . . . , xn. Prove that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξ)

for some number ξ ∈ [x0, xn].
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7H Statistics
(a) State and prove the Rao–Blackwell theorem.

(b) Let X1, . . . ,Xn be an independent sample from Poisson(λ) with θ = e−λ to be
estimated. Show that Y = 1{0}(X1) is an unbiased estimator of θ and that T =

∑

iXi is
a sufficient statistic.

What is E[Y | T ]?

8H Optimisation
Solve the following linear programming problem using the simplex method:

max(x1 + 2x2 + x3)

subject to x1, x2, x3 > 0

x1 + x2 + 2x3 6 10

2x1 + x2 + 3x3 6 15.

Suppose we now subtract ∆ ∈ [0, 10] from the right hand side of the last two con-
straints. Find the new optimal value.
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SECTION II

9F Linear Algebra
Let U and V be finite-dimensional real vector spaces, and let α : U → V be a

surjective linear map. Which of the following are always true and which can be false?
Give proofs or counterexamples as appropriate.

(i) There is a linear map β : V → U such that βα is the identity map on U .

(ii) There is a linear map β : V → U such that αβ is the identity map on V .

(iii) There is a subspace W of U such that the restriction of α to W is an
isomorphism from W to V .

(iv) If X and Y are subspaces of U with U = X ⊕ Y then V = α(X) ⊕ α(Y ).

(v) If X and Y are subspaces of U with V = α(X) ⊕ α(Y ) then U = X ⊕ Y .

10E Groups, Rings and Modules
(a) State Sylow’s theorem.

(b) Let G be a finite simple non-abelian group. Let p be a prime number. Show
that if p divides |G|, then |G| divides np!/2 where np is the number of Sylow p-subgroups
of G.

(c) Let G be a group of order 48. Show that G is not simple. Find an example of
G which has no normal Sylow 2-subgroup.
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11G Analysis II
What does it mean to say that a real-valued function on a metric space is uniformly

continuous? Show that a continuous function on a closed interval in R is uniformly
continuous.

What does it mean to say that a real-valued function on a metric space is Lipschitz?
Show that if a function is Lipschitz then it is uniformly continuous.

Which of the following statements concerning continuous functions f : R → R are
true and which are false? Justify your answers.

(i) If f is bounded then f is uniformly continuous.

(ii) If f is differentiable and f ′ is bounded, then f is uniformly continuous.

(iii) There exists a sequence of uniformly continuous functions converging
pointwise to f .

12E Metric and Topological Spaces
Consider R and R

2 with their usual Euclidean topologies.

(a) Show that a non-empty subset of R is connected if and only if it is an interval.
Find a compact subset K ⊂ R for which R\K has infinitely many connected components.

(b) Let T be a countable subset of R2. Show that R2 \T is path-connected. Deduce
that R2 is not homeomorphic to R.
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13A Complex Analysis or Complex Methods
(a) Let f(z) be defined on the complex plane such that zf(z) → 0 as |z| → ∞ and

f(z) is analytic on an open set containing Im(z) > −c, where c is a positive real constant.

Let C1 be the horizontal contour running from −∞− ic to +∞− ic and let

F (λ) =
1

2πi

∫

C1

f(z)

z − λ
dz.

By evaluating the integral, show that F (λ) is analytic for Im(λ) > −c.

(b) Let g(z) be defined on the complex plane such that z g(z) → 0 as |z| → ∞ with
Im(z) > −c. Suppose g(z) is analytic at all points except z = α+ and z = α− which are
simple poles with Im(α+) > c and Im(α−) < −c.

Let C2 be the horizontal contour running from −∞+ ic to +∞+ ic, and let

H(λ) =
1

2πi

∫

C1

g(z)

z − λ
dz,

J(λ) = −
1

2πi

∫

C2

g(z)

z − λ
dz.

(i) Show that H(λ) is analytic for Im(λ) > −c.

(ii) Show that J(λ) is analytic for Im(λ) < c.

(iii) Show that if −c < Im(λ) < c then H(λ) + J(λ) = g(λ).

[You should be careful to make sure you consider all points in the required regions.]
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14B Methods
(a)

(i) Compute the Fourier transform h̃(k) of h(x) = e−a|x|, where a is a real positive
constant.

(ii) Consider the boundary value problem

−
d2u

dx2
+ ω2u = e−|x| on −∞ < x <∞

with real constant ω 6= ±1 and boundary condition u(x) → 0 as |x| → ∞.
Find the Fourier transform ũ(k) of u(x) and hence solve the boundary value
problem. You should clearly state any properties of the Fourier transform that
you use.

(b) Consider the wave equation

vtt = vxx on −∞ < x <∞ and t > 0

with initial conditions
v(x, 0) = f(x) vt(x, 0) = g(x).

Show that the Fourier transform ṽ(k, t) of the solution v(x, t) with respect to the variable
x is given by

ṽ(k, t) = f̃(k) cos kt+
g̃(k)

k
sin kt

where f̃(k) and g̃(k) are the Fourier transforms of the initial conditions.
Starting from ṽ(k, t) derive d’Alembert’s solution for the wave equation:

v(x, t) =
1

2

(

f(x− t) + f(x+ t)

)

+
1

2

∫ x+t

x−t

g(ξ)dξ .

You should state clearly any properties of the Fourier transform that you use.
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15B Quantum Mechanics
Consider the time-independent Schrödinger equation in one dimension for a particle

of mass m with potential V (x).

(a) Show that if the potential is an even function then any non-degenerate stationary state
has definite parity.

(b) A particle of mass m is subject to the potential V (x) given by

V (x) = −λ

(

δ(x− a) + δ(x+ a)

)

where λ and a are real positive constants and δ(x) is the Dirac delta function.

Derive the conditions satisfied by the wavefunction ψ(x) around the points x = ±a.

Show (using a graphical method or otherwise) that there is a bound state of even
parity for any λ > 0, and that there is an odd parity bound state only if λ > ~

2/(2ma).
[Hint: You may assume without proof that the functions x tanhx and x coth x are

monotonically increasing for x > 0.]
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16C Electromagnetism
Write down Maxwell’s equations for the electric field E(x, t) and the magnetic field

B(x, t) in a vacuum. Deduce that both E and B satisfy a wave equation, and relate the
wave speed c to the physical constants ǫ0 and µ0.

Verify that there exist plane-wave solutions of the form

E(x, t) = Re
[

e ei(k·x−ωt)
]

,

B(x, t) = Re
[

b ei(k·x−ωt)
]

,

where e and b are constant complex vectors, k is a constant real vector and ω is a real
constant. Derive the dispersion relation that relates the angular frequency ω of the wave to
the wavevector k, and give the algebraic relations between the vectors e, b and k implied
by Maxwell’s equations.

Let n be a constant real unit vector. Suppose that a perfect conductor occupies the
region n · x < 0 with a plane boundary n · x = 0. In the vacuum region n · x > 0, a plane
electromagnetic wave of the above form, with k ·n < 0, is incident on the plane boundary.
Write down the boundary conditions on E and B at the surface of the conductor. Show
that Maxwell’s equations and the boundary conditions are satisfied if the solution in the
vacuum region is the sum of the incident wave given above and a reflected wave of the
form

E′(x, t) = Re
[

e′ ei(k
′
·x−ωt)

]

,

B′(x, t) = Re
[

b′ ei(k
′
·x−ωt)

]

,

where

e′ = −e+ 2(n · e)n ,

b′ = b− 2(n · b)n ,

k′ = k− 2(n · k)n .
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17D Fluid Dynamics
A layer of thickness h of fluid of density ρ and dynamic viscosity µ flows steadily

down and parallel to a rigid plane inclined at angle α to the horizontal. Wind blows over
the surface of the fluid and exerts a stress S on the surface of the fluid in the upslope
direction.

(a) Draw a diagram of this situation, including indications of the applied stresses
and body forces, a suitable coordinate system and a representation of the expected velocity
profile.

(b) Write down the equations and boundary conditions governing the flow, with
a brief description of each, paying careful attention to signs. Solve these equations to
determine the pressure and velocity fields.

(c) Determine the volume flux and show that there is no net flux if

S =
2

3
ρgh sinα.

Draw a sketch of the corresponding velocity profile.

(d) Determine the value of S for which the shear stress on the rigid plane is zero
and draw a sketch of the corresponding velocity profile.

18C Numerical Analysis
A three-stage explicit Runge–Kutta method for solving the autonomous ordinary

differential equation
dy

dt
= f(y)

is given by
yn+1 = yn + h(b1k1 + b2k2 + b3k3) ,

where

k1 = f(yn) ,

k2 = f(yn + ha1k1) ,

k3 = f(yn + h(a2k1 + a3k2))

and h > 0 is the time-step. Derive sufficient conditions on the coefficients b1, b2, b3, a1,
a2 and a3 for the method to be of third order.

Assuming that these conditions hold, verify that −5
2 belongs to the linear stability

domain of the method.
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19H Statistics
(a) Give the definitions of a sufficient and a minimal sufficient statistic T for an

unknown parameter θ.

Let X1,X2, . . . ,Xn be an independent sample from the geometric distribution with
success probability 1/θ and mean θ > 1, i.e. with probability mass function

p(m) =
1

θ

(

1−
1

θ

)m−1

for m = 1, 2, . . . .

Find a minimal sufficient statistic for θ. Is your statistic a biased estimator of θ?

[You may use results from the course provided you state them clearly.]

(b) Define the bias of an estimator. What does it mean for an estimator to be
unbiased?

Suppose that Y has the truncated Poisson distribution with probability mass
function

p(y) = (eθ − 1)−1 ·
θy

y!
for y = 1, 2, . . . .

Show that the only unbiased estimator T of 1 − e−θ based on Y is obtained by taking
T = 0 if Y is odd and T = 2 if Y is even.

Is this a useful estimator? Justify your answer.

20H Markov Chains
A rich and generous man possesses n pounds. Some poor cousins arrive at his

mansion. Being generous he decides to give them money. On day 1, he chooses uniformly
at random an integer between n− 1 and 1 inclusive and gives it to the first cousin. Then
he is left with x pounds. On day 2, he chooses uniformly at random an integer between
x − 1 and 1 inclusive and gives it to the second cousin and so on. If x = 1 then he does
not give the next cousin any money. His choices of the uniform numbers are independent.
Let Xi be his fortune at the end of day i.

Show that X is a Markov chain and find its transition probabilities.

Let τ be the first time he has 1 pound left, i.e. τ = min{i > 1 : Xi = 1}. Show
that

E[τ ] =
n−1
∑

i=1

1

i
.

END OF PAPER
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