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SECTION I

1G Groups Rings and Modules
Assume a group G acts transitively on a set Ω and that the size of Ω is a prime number.

Let H be a normal subgroup of G that acts non-trivially on Ω.

Show that any two H-orbits of Ω have the same size. Deduce that the action of H on Ω is
transitive.

Let α ∈ Ω and let Gα denote the stabiliser of α in G. Show that if H ∩Gα is trivial, then
there is a bijection θ : H → Ω under which the action of Gα on H by conjugation corresponds to
the action of Gα on Ω.

2E Analysis and Topology
Let τ be the collection of subsets of C of the form C\f−1(0), where f is an arbitrary complex

polynomial. Show that τ is a topology on C.

Given topological spaces X and Y , define the product topology on X × Y . Equip C2 with
the topology given by the product of (C, τ) with itself. Let g be an arbitrary two-variable complex
polynomial. Is the subset C2\g−1(0) always open in this topology? Justify your answer.

3D Variational Principles
Find the stationary points of the function φ = xyz subject to the constraint

x + a2y2 + z2 = b2, with a, b > 0. What are the maximum and minimum values attained by
φ, subject to this constraint, if we further restrict to x > 0?

4B Methods
Find the Fourier transform of the function

f(x) =

{
A , |x| 6 1

0 , |x| > 1 .

Determine the convolution of the function f(x) with itself.

State the convolution theorem for Fourier transforms. Using it, or otherwise, determine the
Fourier transform of the function

g(x) =

{
B(2− |x|) , |x| 6 2

0 , |x| > 2 .

5D Electromagnetism
Two concentric spherical shells with radii R and 2R carry fixed, uniformly distributed

charges Q1 and Q2 respectively. Find the electric field and electric potential at all points in space.
Calculate the total energy of the electric field.
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6C Fluid Dynamics
Incompressible fluid of constant viscosity µ is confined to the region 0 < y < h between

two parallel rigid plates. Consider two parallel viscous flows: flow A is driven by the motion of
one plate in the x-direction with the other plate at rest; flow B is driven by a constant pressure
gradient in the x-direction with both plates at rest. The velocity mid-way between the plates is
the same for both flows.

The viscous friction in these flows is known to produce heat locally at a rate

Q = µ

(
∂u

∂y

)2

per unit volume, where u is the x-component of the velocity. Determine the ratio of the total rate
of heat production in flow A to that in flow B.

7H Markov Chains
Let (Xn)n>0 be a Markov chain with state space {1, 2} and transition matrix

P =

(
1− α α
β 1− β

)

where α, β ∈ (0, 1]. Compute P(Xn = 1|X0 = 1). Find the value of P(Xn = 1|X0 = 2).
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SECTION II

8F Linear Algebra
Let V be a finite-dimensional vector space over a field. Show that an endomorphism α of

V is idempotent, i.e. α2 = α, if and only if α is a projection onto its image.

Determine whether the following statements are true or false, giving a proof or counter-
example as appropriate:

(i) If α3 = α2, then α is idempotent.

(ii) The condition α(1 − α)2 = 0 is equivalent to α being idempotent.

(iii) If α and β are idempotent and such that α+ β is also idempotent, then αβ = 0.

(iv) If α and β are idempotent and αβ = 0, then α+ β is also idempotent.

9G Groups Rings and Modules
State Gauss’ lemma. State and prove Eisenstein’s criterion.

Define the notion of an algebraic integer. Show that if α is an algebraic integer, then
{f ∈ Z[X] : f(α) = 0} is a principal ideal generated by a monic, irreducible polynomial.

Let f = X4 + 2X3 − 3X2 − 4X − 11. Show that Q[X]/(f) is a field. Show that Z[X]/(f)
is an integral domain, but not a field. Justify your answers.
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10E Analysis and Topology
Let C[0, 1] be the space of continuous real-valued functions on [0, 1], and let d1, d∞ be the

metrics on it given by

d1(f, g) =

∫ 1

0

|f(x)− g(x)| dx and d∞(f, g) = maxx∈[0,1]|f(x)− g(x)|.

Show that id : (C[0, 1], d∞) → (C[0, 1], d1) is a continuous map. Do d1 and d∞ induce the same
topology on C[0, 1]? Justify your answer.

Let d denote for any m ∈ N the uniform metric on Rm: d((xi), (yi)) = maxi|xi − yi|.
Let Pn ⊂ C[0, 1] be the subspace of real polynomials of degree at most n. Define a Lipschitz
map between two metric spaces, and show that evaluation at a point gives a Lipschitz map
(C[0, 1], d∞) → (R, d). Hence or otherwise find a bijection from (Pn, d∞) to (Rn+1, d) which
is Lipschitz and has a Lipschitz inverse.

Let P̃n ⊂ Pn be the subset of polynomials with values in the range [−1, 1].

(i) Show that (P̃n, d∞) is compact.

(ii) Show that d1 and d∞ induce the same topology on P̃n.

Any theorems that you use should be clearly stated.

[You may use the fact that for distinct constants ai, the following matrix is invertible:




1 a0 a20 . . . an0

1 a1 a21 . . . an1

...
...

...
...

1 an a2n . . . ann



.]
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11F Geometry
Let H = {z = x + iy ∈ C : y > 0} be the hyperbolic half-plane with the metric

gH = (dx2 + dy2)/y2. Define the length of a continuously differentiable curve in H with respect
to gH .

What are the hyperbolic lines in H? Show that for any two distinct points z, w in H, the
infimum ρ(z, w) of the lengths (with respect to gH) of curves from z to w is attained by the segment
[z, w] of the hyperbolic line with an appropriate parameterisation.

The ‘hyperbolic Pythagoras theorem’ asserts that if a hyperbolic triangle ABC has angle
π/2 at C then

cosh c = cosh a cosh b ,

where a, b, c are the lengths of the sides BC, AC, AB, respectively.

Let l and m be two hyperbolic lines in H such that

inf{ρ(z, w) : z ∈ l, w ∈ m} = d > 0.

Prove that the distance d is attained by the points of intersection with a hyperbolic line h that
meets each of l, m orthogonally. Give an example of two hyperbolic lines l and m such that the
infimum of ρ(z, w) is not attained by any z ∈ l, w ∈ m.

[You may assume that every Möbius transformation that maps H onto itself is an isometry
of gH .]

12B Complex Analysis or Complex Methods
For the function

f(z) =
1

z(z − 2)
,

find the Laurent expansions

(i) about z = 0 in the annulus 0 < |z| < 2 ,

(ii) about z = 0 in the annulus 2 < |z| <∞ ,

(iii) about z = 1 in the annulus 0 < |z − 1| < 1 .

What is the nature of the singularity of f , if any, at z = 0, z =∞ and z = 1?

Using an integral of f , or otherwise, evaluate

∫ 2π

0

2− cos θ

5− 4 cos θ
dθ .
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13A Methods
(i) The solution to the equation

d

dx

(
x
dF

dx

)
+ α2xF = 0

that is regular at the origin is F (x) = CJ0(αx), where α is a real, positive parameter, J0 is a
Bessel function, and C is an arbitrary constant. The Bessel function has infinitely many zeros:
J0(γk) = 0 with γk > 0, for k = 1, 2, . . . . Show that

∫ 1

0

J0(αx) J0(βx)x dx =
βJ0(α)J ′

0(β)− αJ0(β)J ′
0(α)

α2 − β2
, α 6= β ,

(where α and β are real and positive) and deduce that

∫ 1

0

J0(γkx) J0(γ`x)x dx = 0 , k 6= ` ;

∫ 1

0

(J0(γkx))2 x dx =
1

2
(J ′

0(γk))2 .

[Hint: For the second identity, consider α = γk and β = γk + ε with ε small.]

(ii) The displacement z(r, t) of the membrane of a circular drum of unit radius obeys

1

r

∂

∂r

(
r
∂z

∂r

)
=

∂2z

∂t2
, z(1, t) = 0 ,

where r is the radial coordinate on the membrane surface, t is time (in certain units), and the
displacement is assumed to have no angular dependence. At t = 0 the drum is struck, so that

z(r, 0) = 0 ,
∂z

∂t
(r, 0) =

{
U , r < b

0 , r > b

where U and b < 1 are constants. Show that the subsequent motion is given by

z(r, t) =

∞∑

k=1

Ck J0(γkr) sin(γkt) where Ck = −2bU
J ′
0(γkb)

γ2k(J ′
0(γk))2

.
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14A Quantum Mechanics
(a) The potential V (x) for a particle of mass m in one dimension is such that V → 0

rapidly as x → ±∞. Let ψ(x) be a wavefunction for the particle satisfying the time-independent
Schrödinger equation with energy E.

Suppose ψ has the asymptotic behaviour

ψ(x) ∼ Aeikx +Be−ikx (x→ −∞) , ψ(x) ∼ Ceikx (x→ +∞) ,

where A, B, C are complex coefficients. Explain, in outline, how the probability current j(x) is
used in the interpretation of such a solution as a scattering process and how the transmission and
reflection probabilities Ptr and Pref are found.

Now suppose instead that ψ(x) is a bound state solution. Write down the asymptotic
behaviour in this case, relating an appropriate parameter to the energy E.

(b) Consider the potential

V (x) = − ~2

m

a2

cosh2ax

where a is a real, positive constant. Show that

ψ(x) = Neikx(a tanh ax − ik) ,

where N is a complex coefficient, is a solution of the time-independent Schrödinger equation for
any real k and find the energy E. Show that ψ represents a scattering process for which Pref = 0,
and find Ptr explicitly.

Now let k = iλ in the formula for ψ above. Show that this defines a bound state if a certain
real positive value of λ is chosen and find the energy of this solution.

15D Electromagnetism
(a) A surface current K = Kex, with K a constant and ex the unit vector in the x-direction,

lies in the plane z = 0. Use Ampère’s law to determine the magnetic field above and below the
plane. Confirm that the magnetic field is discontinuous across the surface, with the discontinuity
given by

lim
z→0+

ez ×B− lim
z→0−

ez ×B = µ0K ,

where ez is the unit vector in the z-direction.

(b) A surface current K flows radially in the z = 0 plane, resulting in a pile-up of charge Q
at the origin, with dQ/dt = I, where I is a constant.

Write down the electric field E due to the charge at the origin, and hence the displacement
current ε0∂E/∂t.

Confirm that, away from the plane and for θ < π/2, the magnetic field due to the
displacement current is given by

B(r, θ) =
µ0I

4πr
tan

(
θ

2

)
eφ ,

where (r, θ, φ) are the usual spherical polar coordinates. [Hint: Use Stokes’ theorem applied to a
spherical cap that subtends an angle θ.]
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16C Fluid Dynamics
A vertical cylindrical container of radius R is partly filled with fluid of constant density to

depth h. The free surface is perturbed so that the fluid occupies the region

0 < r < R, −h < z < ζ(r, θ, t),

where (r, θ, z) are cylindrical coordinates and ζ is the perturbed height of the free surface. For
small perturbations, a linearised description of surface waves in the cylinder yields the following
system of equations for ζ and the velocity potential φ:

∇2φ = 0 , 0 < r < R , −h < z < 0 , (1)

∂φ

∂t
+ gζ = 0 on z = 0 , (2)

∂ζ

∂t
− ∂φ

∂z
= 0 on z = 0 , (3)

∂φ

∂z
= 0 on z = −h , (4)

∂φ

∂r
= 0 on r = R . (5)

(a) Describe briefly the physical meaning of each equation.

(b) Consider axisymmetric normal modes of the form

φ = Re
(
φ̂(r, z)e−iσt

)
, ζ = Re

(
ζ̂(r)e−iσt

)
.

Show that the system of equations (1)–(5) admits a solution for φ̂ of the form

φ̂(r, z) = AJ0(knr)Z(z) ,

where A is an arbitrary amplitude, J0(x) satisfies the equation

d2J0
dx2

+
1

x

dJ0
dx

+ J0 = 0 ,

the wavenumber kn, n = 1, 2, . . . is such that xn = knR is one of the zeros of the function dJ0/dx,
and the function Z(z) should be determined explicitly.

(c) Show that the frequency σn of the n-th mode is given by

σ2
n =

g

h
Ψ(knh) ,

where the function Ψ(x) is to be determined.

[Hint: In cylindrical coordinates (r, θ, z),

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
.]
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17C Numerical Analysis
Consider a multistep method for numerical solution of the differential equation y′ = f(t,y):

yn+2 − yn+1 = h [ (1 + α)f(tn+2,yn+2) + βf(tn+1,yn+1) − (α+ β)f(tn,yn) ] , (∗)

where n = 0, 1, . . . , and α and β are constants.

(a) Define the order of a method for numerically solving an ODE.

(b) Show that in general an explicit method of the form (∗) has order 1. Determine the
values of α and β for which this multistep method is of order 3.

(c) Show that the multistep method (∗) is convergent.

18H Statistics
Consider the general linear model Y = Xβ0 + ε where X is a known n × p design matrix

with p > 2, β0 ∈ Rp is an unknown vector of parameters, and ε ∈ Rn is a vector of stochastic errors
with E(εi) = 0, var(εi) = σ2 > 0 and cov(εi, εj) = 0 for all i, j = 1, . . . , n with i 6= j. Suppose X
has full column rank.

(a) Write down the least squares estimate β̂ of β0 and show that it minimises the least
squares objective S(β) = ‖Y −Xβ‖2 over β ∈ Rp.

(b) Write down the variance–covariance matrix cov(β̂).

(c) Let β̃ ∈ Rp minimise S(β) over β ∈ Rp subject to βp = 0. Let Z be the n × (p − 1)

submatrix of X that excludes the final column. Write down cov(β̃).

(d) Let P and P0 be n × n orthogonal projections onto the column spaces of X and Z
respectively. Show that for all u ∈ Rn, uTPu > uTP0u.

(e) Show that for all x ∈ Rp,

var(xT β̃) 6 var(xT β̂).

[Hint: Argue that x = XTu for some u ∈ Rn.]

19H Optimisation
State and prove the Lagrangian sufficiency theorem.

Solve, using the Lagrangian method, the optimisation problem

maximise x+ y + 2a
√

1 + z

subject to x+
1

2
y2 + z = b ,

x, z > 0 ,

where the constants a and b satisfy a > 1 and b > 1/2.

[You need not prove that your solution is unique.]

END OF PAPER
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