
MATHEMATICAL TRIPOS Part II

Friday, 11 September, 2020 1:30 pm to 4:30 pm

PAPER 4

Before you begin read these instructions carefully.

The examination paper is divided into two sections. Each question in Section II
carries twice the number of marks of each question in Section I. Section II questions
also carry an alpha or beta quality mark and Section I questions carry a beta quality
mark.

Candidates may obtain credit from attempts on at most six questions from Section
I and from any number of questions from Section II.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Separate your answers to each question.

Complete a gold cover sheet for each question that you have attempted, and place
it at the front of your answer to that question.

Complete a green master cover sheet listing all the questions that you have
attempted.

Every cover sheet must also show your Blind Grade ID and desk number.

Tie up your answers and cover sheets into a single bundle, with the master cover
sheet on the top, and then the cover sheet and answer for each question, in the
numerical order of the questions.

STATIONERY REQUIREMENTS
Gold cover sheets
Green master cover sheet
Script paper
Rough paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

SECTION I

1H Number Theory
Let p be a prime.

State and prove Lagrange’s theorem on the number of solutions of a polynomial congruence
modulo p. Deduce that (p− 1)! ≡ −1 mod p.

Let k be a positive integer such that k|(p− 1). Show that the congruence

xk ≡ 1 mod p

has precisely k solutions modulo p.

2H Topics in Analysis
Define what is meant by a nowhere dense set in a metric space. State a version of the Baire

Category theorem.

Let f : [1,∞) → R be a continuous function such that f(nx) → 0 as n→ ∞ for every fixed
x > 1. Show that f(t) → 0 as t→ ∞.

3I Coding and Cryptography
(a) What does it mean to say that a cipher has perfect secrecy? Show that if a cipher has

perfect secrecy then there must be at least as many possible keys as there are possible plaintext
messages. What is a one-time pad? Show that a one-time pad has perfect secrecy.

(b) I encrypt a binary sequence a1, a2, . . . , aN using a one-time pad with key sequence
k1, k2, k3, . . .. I transmit a1 + k1, a2 + k2, . . . , aN + kN to you. Then, by mistake, I also transmit
a1 + k2, a2 + k3, . . . , aN + kN+1 to you. Assuming that you know I have made this error, and that
my message makes sense, how would you go about finding my message? Can you now decipher
other messages sent using the same part of the key sequence? Briefly justify your answer.

4F Automata and Formal Languages
Define what it means for a context-free grammar (CFG) to be in Chomsky normal form

(CNF).

Describe without proof each stage in the process of converting a CFG G = (N,Σ, P, S) into
an equivalent CFG G which is in CNF. For each of these stages, when are the nonterminals N left
unchanged? What about the terminals Σ and the generated language L(G)?

Give an example of a CFG G whose generated language L(G) is infinite and equal to L(G).

Part II, Paper 4
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5J Statistical Modelling
Suppose you have a data frame with variables response, covar1, and covar2. You run the

following commands on R.

model <- lm(response ~ covar1 + covar2)

summary(model)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.1024 0.1157 -18.164 <2e-16

covar1 1.6329 2.6557 0.615 0.542

covar2 0.3755 2.5978 0.145 0.886

...

(a) Consider the following three scenarios:

(i) All the output you have is the abbreviated output of summary(model) above.

(ii) You have the abbreviated output of summary(model) above together with

Residual standard error: 0.8097 on 47 degrees of freedom

Multiple R-squared: 0.8126, Adjusted R-squared: 0.8046

F-statistic: 101.9 on 2 and 47 DF, p-value: < 2.2e-16

(iii) You have the abbreviated output of summary(model) above together with

Residual standard error: 0.9184 on 47 degrees of freedom

Multiple R-squared: 0.000712, Adjusted R-squared: -0.04181

F-statistic: 0.01674 on 2 and 47 DF, p-value: 0.9834

What conclusion can you draw about which variables explain the response in each of the
three scenarios? Explain.

(b) Assume now that you have the abbreviated output of summary(model) above together
with

anova(lm(response ~ 1), lm(response ~ covar1), model)

...

Res.Df RSS Df Sum of Sq F Pr(>F)

1 49 164.448

2 ? 30.831 ? 133.618 ? <2e-16

3 ? 30.817 ? 0.014 ? ?

...

What are the values of the entries with a question mark? [You may express your answers as
arithmetic expressions if necessary].
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6B Mathematical Biology
Consider a population process in which the probability of transition from a state with n

individuals to a state with n+ 1 individuals in the interval (t, t+ ∆t) is λn∆t for small ∆t.

(i) Write down the master equation for the probability, Pn(t), of the state n at time t for
n > 1.

(ii) Assuming an initial distribution

Pn(0) =

{
1 , if n = 1 ,

0 , if n > 1 ,

show that
Pn(t) = exp(−λt)(1 − exp(−λt))n−1 .

(iii) Hence, determine the mean of n for t > 0.

7E Further Complex Methods
The Hilbert transform of a function f(x) is defined by

H(f)(y) :=
1

π
P
∫ +∞

−∞

f(x)

y − xdx .

Calculate the Hilbert transform of f(x) = cosωx, where ω is a non-zero real constant.

8B Classical Dynamics
Derive expressions for the angular momentum and kinetic energy of a rigid body in terms

of its mass M , the position X(t) of its centre of mass, its inertia tensor I (which should be defined)
about its centre of mass, and its angular velocity ω.

A spherical planet of mass M and radius R has density proportional to r−1 sin(πr/R).
Given that

∫ π

0
x sinx dx = π and

∫ π

0
x3 sinx dx = π(π2 − 6), evaluate the inertia tensor of the

planet in terms of M and R.

Part II, Paper 4
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9D Cosmology
At temperature T and chemical potential µ, the number density of a non-relativistic particle

species with mass m� kBT/c
2 is given by

n = g

(
mkBT

2π~2

)3/2

e−(mc2−µ)/kBT ,

where g is the number of degrees of freedom of this particle.

At recombination, electrons and protons combine to form hydrogen. Use the result above
to derive the Saha equation

nH ≈ n2e

(
2π~2

mekBT

)3/2

eEbind/kBT ,

where nH is the number density of hydrogen atoms, ne the number density of electrons, me the
mass of the electron and Ebind the binding energy of hydrogen. State any assumptions that you
use in this derivation.

10C Quantum Information and Computation
(i) What is the action of QFTN on a state |x〉, where x ∈ {0, 1, 2, . . . , N − 1} and QFTN

denotes the Quantum Fourier Transform modulo N?

(ii) For the case N = 4 write 0, 1, 2, 3 respectively in binary as 00, 01, 10, 11 thereby
identifying the four-dimensional space as that of two qubits. Show that QFTN |10〉 is an
unentangled state of the two qubits.

(iii) Prove that (QFTN )2 |x〉 = |N − x〉, where (QFTN )2 ≡ QFTN ◦QFTN .

[Hint: For ω = e2πi/N ,
∑N−1
m=0 ω

mK = 0 if K is not a multiple of N .]

(iv) What is the action of (QFTN )4 on a state |x〉, for any x ∈ {0, 1, 2, . . . , N − 1}? Use the
above to determine what the eigenvalues of QFTN are.
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SECTION II

11H Number Theory

(a) What does it mean to say that a function f : N → C is multiplicative? Show that if
f, g : N → C are both multiplicative, then so is f ? g : N → C, defined for all n ∈ N by

f ? g(n) =
∑

d|n
f(d) g

(n
d

)
.

Show that if f = µ ? g, where µ is the Möbius function, then g = f ? 1, where 1 denotes the
constant function 1.

(b) Let τ(n) denote the number of positive divisors of n. Find f, g : N → C such that τ = f ? g,
and deduce that τ is multiplicative. Hence or otherwise show that for all s ∈ C with
Re(s) > 1,

∞∑

n=1

τ(n)

ns
= ζ(s)2,

where ζ is the Riemann zeta function.

(c) Fix k ∈ N. By considering suitable powers of the product of the first k + 1 primes, show
that

τ(n) > (log n)k

for infinitely many n ∈ N.

(d) Fix ε > 0. Show that
τ(n)

nε
=

∏

p prime, pα||n

(α+ 1)

pαε
,

where pα || n denotes the fact that α ∈ N is such that pα | n but pα+1 - n. Deduce that there
exists a positive constant C(ε) depending only on ε such that for all n ∈ N, τ(n) 6 C(ε)nε.

Part II, Paper 4
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12H Topics in Analysis
(a) State Liouville’s theorem on the approximation of algebraic numbers by rationals.

(b) Let (an)∞n=0 be a sequence of positive integers and let

α = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

be the value of the associated continued fraction.

(i) Prove that the nth convergent pn/qn satisfies

∣∣∣∣α− pn
qn

∣∣∣∣ 6
∣∣∣∣α− p

q

∣∣∣∣

for all the rational numbers
p

q
such that 0 < q 6 qn.

(ii) Show that if the sequence (an) is bounded, then one can choose c > 0 (depending only

on α), so that for every rational number
a

b
,

∣∣∣∣α− a

b

∣∣∣∣ >
c

b2
.

(iii) Show that if the sequence (an) is unbounded, then for each c > 0 there exist infinitely

many rational numbers
a

b
such that

∣∣∣∣α− a

b

∣∣∣∣ <
c

b2
.

[You may assume without proof the relation

(
pn+1 pn
qn+1 qn

)
=

(
pn pn−1
qn qn+1

)(
an+1 1

1 0

)
, n = 1, 2, . . . .]
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13J Statistical Modelling
(a) Define a generalised linear model (GLM) with design matrix X ∈ Rn×p, output

variables Y := (Y1, . . . , Yn)T and parameters µ := (µ1, . . . , µn)T , β ∈ Rp and σ2
i := aiσ

2 ∈
(0,∞), i = 1, . . . , n. Derive the moment generating function of Y , i.e. give an expression for
E
[
exp

(
tTY

)]
, t ∈ Rn, wherever it is well-defined.

Assume from now on that the GLM satisfies the usual regularity assumptions, X has full
column rank, and σ2 is known and satisfies 1/σ2 ∈ N.

(b) Let Ỹ :=
(
Ỹ1, . . . , Ỹn/σ2

)T
be the output variables of a GLM from the same family as

that of part (a) and parameters µ̃ := (µ̃1, . . . , µ̃n/σ2)T and σ̃2 := (σ̃2
1 , . . . , σ̃

2
n/σ2). Suppose the

output variables may be split into n blocks of size 1/σ2 with constant parameters. To be precise,
for each block i = 1, . . . , n, if j ∈ {(i− 1)/σ2 + 1, . . . , i/σ2} then

µ̃j = µi and σ̃2
j = ai

with µi = µi(β) and ai defined as in part (a). Let Ȳ := (Ȳ1, . . . , Ȳn)T , where Ȳi :=

σ2
∑1/σ2

k=1 Ỹ(i−1)/σ2+k.

(i) Show that Ȳ is equal to Y in distribution. [Hint: you may use without proof that moment
generating functions uniquely determine distributions from exponential dispersion families.]

(ii) For any ỹ ∈ Rn/σ2

, let ȳ = (ȳ1, . . . , ȳn)T , where ȳi := σ2
∑1/σ2

k=1 ỹ(i−1)/σ2+k. Show that

the model function of Ỹ satisfies

f
(
ỹ; µ̃, σ̃2

)
= g1

(
ȳ; µ̃, σ̃2

)
× g2

(
ỹ; σ̃2

)

for some functions g1, g2, and conclude that Ȳ is a sufficient statistic for β from Ỹ .

(iii) For the model and data from part (a), let µ̂ be the maximum likelihood estimator for
µ and let D(Y ;µ) be the deviance at µ. Using (i) and (ii), show that

D(Y ; µ̂)

σ2
=d 2 log

{
sup

µ̃′∈M̃1
f(Ỹ ; µ̃′, σ̃2)

sup
µ̃′∈M̃0

f(Ỹ ; µ̃′, σ̃2)

}
,

where =d means equality in distribution and M̃0 and M̃1 are nested subspaces of Rn/σ2

which you
should specify. Argue that dim(M̃1) = n and dim(M̃0) = p, and, assuming the usual regularity
assumptions, conclude that

D(Y ; µ̂)

σ2
→d χ2

n−p as σ2 → 0,

stating the name of the result from class that you use.
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14B Mathematical Biology
Consider the stochastic catalytic reaction

E � ES, ES → E + P

in which a single enzyme E complexes reversibly to ES (at forward rate k1 and reverse rate k′1)
and decomposes into product P (at forward rate k2), regenerating enzyme E. Assume there is
sufficient substrate S so that this catalytic cycle can continue indefinitely. Let P (E,n) be the
probability of the state with enzyme E and n products and P (ES, n) the probability of the state
with complex ES and n products, these states being mutually exclusive.

(i) Write down the master equation for the probabilities P (E,n) and P (ES, n) for n > 0.

(ii) Assuming an initial state with zero products, solve the master equation for P (E, 0) and
P (ES, 0).

(iii) Hence find the probability distribution f(τ) of the time τ taken to form the first product.

(iv) Obtain the mean of τ .

15B Classical Dynamics
(a) Explain how the Hamiltonian H(q,p, t) of a system can be obtained from its Lagrangian

L(q, q̇, t). Deduce that the action can be written as

S =

∫
(p · dq−H dt) .

Show that Hamilton’s equations are obtained if the action, computed between fixed initial and
final configurations q(t1) and q(t2), is minimized with respect to independent variations of q and
p.

(b) Let (Q,P) be a new set of coordinates on the same phase space. If the old and new
coordinates are related by a type-2 generating function F2(q,P, t) such that

p =
∂F2

∂q
, Q =

∂F2

∂P
,

deduce that the canonical form of Hamilton’s equations applies in the new coordinates, but with
a new Hamiltonian given by

K = H +
∂F2

∂t
.

(c) For each of the Hamiltonians

(i) H = H(p) , (ii) H =
1

2
(q2 + p2) ,

express the general solution (q(t), p(t)) at time t in terms of the initial values given by (Q,P ) =
(q(0), p(0)) at time t = 0. In each case, show that the transformation from (q, p) to (Q,P ) is
canonical for all values of t, and find the corresponding generating function F2(q, P, t) explicitly.

Part II, Paper 4 [TURN OVER]
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16H Logic and Set Theory
(a) State Zorn’s lemma.

[Throughout the remainder of this question, assume Zorn’s lemma.]

(b) Let P be a poset in which every non-empty chain has an upper bound and let x ∈ P .
By considering the poset Px = {y ∈ P | x 6 y}, show that P has a maximal element σ with x 6 σ.

(c) A filter is a non-empty subset F ⊂ P(N) satisfying the following three conditions:

• if A, B ∈ F then A ∩B ∈ F ;

• if A ∈ F and A ⊂ B then B ∈ F ;

• ∅ 6∈ F .

An ultrafilter is a filter U such that for all A ⊂ N we have either A ∈ U or Ac ∈ U , where Ac = N\A.

(i) For each n ∈ N, show that Un = {A ⊂ N | n ∈ A} is an ultrafilter.

(ii) Show that F = {A ⊂ N | Ac is finite} is a filter but not an ultrafilter, and that for all
n ∈ N we have F 6⊂ Un.

(iii) Does there exist an ultrafilter U such that U 6= Un for any n ∈ N? Justify your
answer.

17G Graph Theory
State and prove Vizing’s theorem about the chromatic index χ′(G) of a graph G.

Let Km,n be the complete bipartite graph with class sizes m and n. By first considering
χ′(Kn,n), find χ′(Km,n) for all m and n.

Let G be the graph of order 2n+ 1 obtained by subdividing a single edge of Kn,n by a new
vertex. Show that χ′(G) = ∆(G) + 1, where ∆(G) is the maximum degree of G.

18G Galois Theory
(a) Let K be a field. Define the discriminant ∆(f) of a polynomial f(x) ∈ K[x], and explain

why it is in K, carefully stating any theorems you use.

Compute the discriminant of x4 + rx+ s.

(b) Let K be a field and let f(x) ∈ K[x] be a quartic polynomial with roots α1, . . . , α4 such
that α1 + · · ·+ α4 = 0.

Define the resolvant cubic g(x) of f(x).

Suppose that ∆(f) is a square in K. Prove that the resolvant cubic is irreducible if and
only if Gal(f) = A4. Determine the possible Galois groups Gal(f) if g(x) is reducible.

The resolvant cubic of x4 + rx + s is x3 − 4sx − r2. Using this, or otherwise, determine
Gal(f), where f(x) = x4 + 8x+ 12 ∈ Q[x]. [You may use without proof that f is irreducible.]

Part II, Paper 4
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19F Representation Theory
(a) State and prove Burnside’s lemma. Deduce that if a finite group G acts 2-transitively

on a set X then the corresponding permutation character has precisely two (distinct) irreducible
summands.

(b) Suppose that Fq is a field with q elements. Write down a list of conjugacy class
representatives for GL2(Fq). Consider the natural action of GL2(Fq) on the set of lines through
the origin in F2

q. What values does the corresponding permutation character take on each
conjugacy class representative in your list? Decompose this permutation character into irreducible
characters.

20G Number Fields
Let K be a number field of degree n, and let {σi : K ↪→ C} be the set of complex embeddings

of K. Show that if α ∈ OK satisfies |σi(α)| = 1 for every i, then α is a root of unity. Prove also
that there exists c > 1 such that if α ∈ OK and |σi(α)| < c for all i, then α is a root of unity.

State Dirichlet’s Unit theorem.

Let K ⊂ R be a real quadratic field. Assuming Dirichlet’s Unit theorem, show that the set
of units of K which are greater than 1 has a smallest element ε, and that the group of units of K
is then {±εn | n ∈ Z}. Determine ε for Q(

√
11), justifying your result. [If you use the continued

fraction algorithm, you must prove it in full.]

21F Algebraic Topology
In this question, you may assume all spaces involved are triangulable.

(a) (i) State and prove the Mayer–Vietoris theorem. [You may assume the theorem that
states that a short exact sequence of chain complexes gives rise to a long exact sequence of homology
groups.]

(ii) Use Mayer–Vietoris to calculate the homology groups of an oriented surface of genus g.

(b) Let S be an oriented surface of genus g, and let D1, . . . , Dn be a collection of mutually
disjoint closed subsets of S with each Di homeomorphic to a two-dimensional disk. Let D◦

i denote
the interior of Di, homeomorphic to an open two-dimensional disk, and let

T := S \ (D◦
1 ∪ · · · ∪D◦

n).

Show that

Hi(T ) =





Z i = 0,

Z2g+n−1 i = 1,

0 otherwise.

(c) Let T be the surface given in (b) when S = S2 and n = 3. Let f : T → S1 × S1 be a
map. Does there exist a map g : S1 × S1 → T such that f ◦ g is homotopic to the identity map?
Justify your answer.
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22I Linear Analysis
(a) For K a compact Hausdorff space, what does it mean to say that a set S ⊂ C(K) is

equicontinuous. State and prove the Arzelà–Ascoli theorem.

(b) Suppose K is a compact Hausdorff space for which C(K) is a countable union of
equicontinuous sets. Prove that K is finite.

(c) Let F : Rn → Rn be a bounded, continuous function and let x0 ∈ Rn. Consider the
problem of finding a differentiable function x : [0, 1]→ Rn with

x(0) = x0 and x′(t) = F (x(t)) (∗)

for all t ∈ [0, 1]. For each k = 1, 2, 3, . . . , let xk : [0, 1]→ Rn be defined by setting xk(0) = x0 and

xk(t) = x0 +

∫ t

0

F (yk(s)) ds

for t ∈ [0, 1], where

yk(t) = xk

(
j

k

)

for t ∈ ( j
k ,

j+1
k ] and j ∈ {0, 1, . . . , k − 1}.

(i) Verify that xk is well-defined and continuous on [0, 1] for each k.

(ii) Prove that there exists a differentiable function x : [0, 1]→ Rn solving (∗) for t ∈ [0, 1].

23I Analysis of Functions
(a) Define the Sobolev space Hs(Rn) for s ∈ R.

(b) Let k be a non-negative integer and let s > k+ n
2 . Show that if u ∈ Hs(Rn) then there

exists u∗ ∈ Ck(Rn) with u = u∗ almost everywhere.

(c) Show that if f ∈ Hs(Rn) for some s ∈ R, there exists a unique u ∈ Hs+4(Rn) which
solves:

∆∆u+ ∆u+ u = f,

in a distributional sense. Prove that there exists a constant C > 0, independent of f , such that:

‖u‖Hs+4 6 C‖f‖Hs .

For which s will u be a classical solution?

Part II, Paper 4
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24F Algebraic Geometry
Let P0, . . . , Pn be a basis for the homogeneous polynomials of degree n in variables Z0 and

Z1. Then the image of the map P1 → Pn given by

[Z0, Z1] 7→ [P0(Z0, Z1), . . . , Pn(Z0, Z1)]

is called a rational normal curve.

Let p1, . . . , pn+3 be a collection of points in general linear position in Pn. Prove that there
exists a unique rational normal curve in Pn passing through these points.

Choose a basis of homogeneous polynomials of degree 3 as above, and give generators for
the homogeneous ideal of the corresponding rational normal curve.

25I Differential Geometry
(a) State the Gauss–Bonnet theorem for compact regular surfaces S ⊂ R3 without boundary.

Identify all expressions occurring in any formulae.

(b) Let S ⊂ R3 be a compact regular surface without boundary and suppose that its
Gaussian curvature K(x) > 0 for all x ∈ S. Show that S is diffeomorphic to the sphere.

Let Sn be a sequence of compact regular surfaces in R3 and let Kn(x) denote the Gaussian
curvature of Sn at x ∈ Sn. Suppose that

lim sup
n→∞

inf
x∈Sn

Kn(x) > 0. (?)

(c) Give an example to show that it does not follow that for all sufficiently large n the
surface Sn is diffeomorphic to the sphere.

(d) Now assume, in addition to (?), that all of the following conditions hold:

(1) There exists a constant R < ∞ such that for all n, Sn is contained in a ball of radius R
around the origin.

(2) There exists a constant M <∞ such that Area(Sn) 6M for all n.

(3) There exists a constant ε0 > 0 such that for all n, all points p ∈ Sn admit a geodesic polar
coordinate system centred at p of radius at least ε0.

(4) There exists a constant C < ∞ such that on all such geodesic polar neighbourhoods,
|∂rKn| 6 C for all n, where r denotes a geodesic polar coordinate.

(i) Show that for all sufficiently large n, the surface Sn is diffeomorphic to the sphere. [Hint:
It may be useful to identify a geodesic polar ball B(pn, ε0) in each Sn for which

∫
B(pn,ε0)

KndA is

bounded below by a positive constant independent of n.]

(ii) Explain how your example from (c) fails to satisfy one or more of these extra conditions
(1)–(4).

[You may use without proof the standard computations for geodesic polar coordinates: E = 1,
F = 0, limr→0G(r, θ) = 0, limr→0(

√
G)r(r, θ) = 1, and (

√
G)rr = −K

√
G.]

Part II, Paper 4 [TURN OVER]



14

26K Probability and Measure
(a) State and prove the strong law of large numbers for sequences of i.i.d. random variables

with a finite moment of order 4.

(b) Let (Xk)k>1 be a sequence of independent random variables such that

P(Xk = 1) = P(Xk = −1) =
1

2
.

Let (ak)k>1 be a sequence of real numbers such that

∑

k>1

a2k <∞.

Set

Sn :=

n∑

k=1

akXk.

(i) Show that Sn converges in L2 to a random variable S as n → ∞. Does it converge in
L1? Does it converge in law?

(ii) Show that ‖S‖4 6 31/4‖S‖2.

(iii) Let (Yk)k>1 be a sequence of i.i.d. standard Gaussian random variables, i.e. each Yk
is distributed as N (0, 1). Show that then

∑n
k=1 akYk converges in law as n → ∞ to a random

variable and determine the law of the limit.

27K Applied Probability
(i) Explain the notation M(λ)/M(µ)/1 in the context of queueing theory. [In the following,

you may use without proof the fact that πn = (λ/µ)n is the invariant distribution of such a queue
when 0 < λ < µ.]

(ii) In a shop queue, some customers rejoin the queue after having been served. Let
λ, β ∈ (0,∞) and δ ∈ (0, 1). Consider a M(λ)/M(µ)/1 queue subject to the modification that, on
completion of service, each customer leaves the shop with probability δ, or rejoins the shop queue
with probability 1 − δ. Different customers behave independently of one another, and all service
times are independent random variables.

Find the distribution of the total time a given customer spends being served by the server.
Hence show that equilibrium is possible if λ < δµ, and find the invariant distribution of the
queue-length in this case.

(iii) Show that, in equilibrium, the departure process is Poissonian, whereas, assuming the
rejoining customers go to the end of the queue, the process of customers arriving at the queue
(including the rejoining ones) is not Poissonian.
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28J Principles of Statistics
Consider X1, . . . , Xn drawn from a statistical model {f(·, θ) : θ ∈ Θ},Θ = Rp, with non-

singular Fisher information matrix I(θ). For θ0 ∈ Θ, h ∈ Rp, define likelihood ratios

Zn(h) = log

∏n
i=1 f(Xi, θ0 + h/

√
n)∏n

i=1 f(Xi, θ0)
, Xi ∼i.i.d. f(·, θ0).

Next consider the probability density functions (ph : h ∈ Rp) of normal distributions N(h, I(θ0)−1)
with corresponding likelihood ratios given by

Z(h) = log
ph(X)

p0(X)
, X ∼ p0.

Show that for every fixed h ∈ Rp, the random variables Zn(h) converge in distribution as n→∞
to Z(h).

[You may assume suitable regularity conditions of the model {f(·, θ) : θ ∈ Θ} without
specification, and results on uniform laws of large numbers from lectures can be used without proof.]

29K Stochastic Financial Models
(i) What does it mean to say that (S0

t , St)06t6T is a Black–Scholes model with interest rate
r, drift µ and volatility σ?

(ii) Write down the Black–Scholes pricing formula for the time-0 value V0 of a time-T
contingent claim C.

(iii) Show that if C is a European call of strike K and maturity T then

V0 > S0 − e−rTK.

(iv) For the European call, derive the Black–Scholes pricing formula

V0 = S0Φ(d+)− e−rTKΦ(d−),

where Φ is the standard normal distribution function and d+ and d− are to be determined.

(v) Fix t ∈ (0, T ) and consider a modified contract which gives the investor the right but
not the obligation to buy one unit of the risky asset at price K, either at time t or time T but not
both, where the choice of exercise time is to be made by the investor at time t. Determine whether
the investor should exercise the contract at time t.
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30J Mathematics of Machine Learning
Suppose we have input–output pairs (x1, y1), . . . , (xn, yn) ∈ Rp × {−1, 1}. Consider the

empirical risk minimisation problem with hypothesis class

H = {x 7→ xTβ : β ∈ C},

where C is a non-empty closed convex subset of Rp, and logistic loss

`(h(x), y) = log2(1 + e−yh(x)),

for h ∈ H and (x, y) ∈ Rp × {−1, 1}.
(i) Show that the objective function f of the optimisation problem is convex.

(ii) Let πC(x) denote the projection of x onto C. Describe the procedure of stochastic
gradient descent (SGD) for minimisation of f above, giving explicit forms for any gradients used
in the algorithm.

(iii) Suppose β̂ minimises f(β) over β ∈ C. Suppose maxi=1,...,n ‖xi‖2 6 M and
supβ∈C ‖β‖2 6 R. Prove that the output β̄ of k iterations of the SGD algorithm with some
fixed step size η (which you should specify), satisfies

Ef(β̄)− f(β̂) 6 2MR

log(2)
√
k
.

(iv) Now suppose that the step size at iteration s is ηs > 0 for each s = 1, . . . , k. Show that,
writing βs for the sth iterate of SGD, we have

Ef(β̃)− f(β̂) 6 A2M
2

2A1{log(2)}2 +
2R2

A1
,

where

β̃ =
1

A1

k∑

s=1

ηsβs, A1 =

k∑

s=1

ηs and A2 =

k∑

s=1

η2s .

[You may use standard properties of convex functions and projections onto closed convex
sets without proof provided you state them.]
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31A Asymptotic Methods
Consider the differential equation

y′′ − y′ − 2(x+ 1)

x2
y = 0 . (†)

(i) Classify what type of regularity/singularity equation (†) has at x =∞.

(ii) Find a transformation that maps equation (†) to an equation of the form

u′′ + q(x)u = 0 . (∗)

(iii) Find the leading-order term of the asymptotic expansions of the solutions of equation
(∗), as x→∞, using the Liouville–Green method.

(iv) Derive the leading-order term of the asymptotic expansion of the solutions y of (†).
Check that one of them is an exact solution for (†).

32E Dynamical Systems
(a) Let F : I → I be a continuous map defined on an interval I ⊂ R. Define what it means

(i) for F to have a horseshoe and (ii) for F to be chaotic. [Glendinning’s definition should be used
throughout this question.]

(b) Consider the map defined on the interval [−1, 1] by

F (x) = 1− µ|x|

with 0 < µ 6 2.

(i) Sketch F (x) and F 2(x) for a case when 0 < µ < 1 and a case when 1 < µ < 2.

(ii) Describe fully the long term dynamics for 0 < µ < 1. What happens for µ = 1?

(iii) When does F have a horseshoe? When does F 2 have a horseshoe?

(iv) For what values of µ is the map F chaotic?

33A Principles of Quantum Mechanics
Briefly explain why the density operator ρ obeys ρ > 0 and Tr(ρ) = 1. What is meant by a

pure state and a mixed state?

A two-state system evolves under the Hamiltonian H = ~ω ·σ, where ω is a constant vector
and σ are the Pauli matrices. At time t the system is described by a density operator

ρ(t) =
1

2
(1H + a(t) · σ)

where 1H is the identity operator. Initially, the vector a(0) = a obeys |a| < 1 and a · ω = 0. Find
ρ(t) in terms of a and ω. At what time, if any, is the system definitely in the state |↑x 〉 that obeys
σx|↑x〉 = +|↑x 〉?
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34C Applications of Quantum Mechanics
(a) For a particle of charge q moving in an electromagnetic field with vector potential A

and scalar potential φ, write down the classical Hamiltonian and the equations of motion.

(b) Consider the vector and scalar potentials

A =
B

2
(−y, x, 0) , φ = 0 .

(i) Solve the equations of motion. Define and compute the cyclotron frequency ωB .

(ii) Write down the quantum Hamiltonian of the system in terms of the angular momentum
operator

Lz = xpy − ypx .

Show that the states

ψ(x, y) = f(x+ iy)e−(x2+y2)qB/4~ , (†)

for any function f , are energy eigenstates and compute their energy. Define Landau levels and
discuss this result in relation to them.

(iii) Show that for f(w) = wM , the wavefunctions in (†) are eigenstates of angular
momentum and compute the corresponding eigenvalue. These wavefunctions peak in a ring around
the origin. Estimate its radius. Using these two facts or otherwise, estimate the degeneracy of
Landau levels.
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35A Statistical Physics
Consider a classical gas of N particles in volume V , where the total energy is the standard

kinetic energy plus a potential U(x1,x2, ...,xN ) depending on the relative locations of the particles
{xi : 1 6 i 6 N}.

(i) Starting from the partition function, show that the free energy of the gas is

F = Fideal − T log

{
1 +

1

V N

∫
(e−U/T − 1)d3Nx

}
, (∗)

where Fideal is the free energy when U ≡ 0.

(ii) Suppose now that the gas is fairly dilute and that the integral in (∗) is small compared
to V N and is dominated by two-particle interactions. Show that the free energy simplifies to the
form

F = Fideal +
N2T

V
B(T ), (†)

and find an integral expression for B(T ). Using (†) find the equation of state of the gas, and verify
that B(T ) is the second virial coefficient.

(iii) The equation of state for a Clausius gas is

P (V −Nb) = NT

for some constant b. Find the second virial coefficient for this gas. Evaluate b for a gas of hard
sphere atoms of radius r0.
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36D Electrodynamics
(a) A dielectric medium exhibits a linear response if the electric displacement D(x, t) and

magnetizing field H(x, t) are related to the electric and magnetic fields, E(x, t) and B(x, t), as

D = εE , B = µH ,

where ε and µ are constants characterising the electric and magnetic polarisability of the material
respectively. Write down the Maxwell equations obeyed by the fields D, H, B and E in this
medium in the absence of free charges or currents.

(b) Two such media with constants ε− and ε+ (but the same µ) fill the regions x < 0 and
x > 0 respectively in three-dimensions with Cartesian coordinates (x, y, z).

(i) Starting from Maxwell’s equations, derive the appropriate boundary conditions at x = 0
for a time-independent electric field E(x).

(ii) Consider a candidate solution of Maxwell’s equations describing the reflection and
transmission of an incident electromagnetic wave of wave vector kI and angular frequency ωI

off the interface at x = 0. The electric field is given as,

E(x, t) =





∑
X=I,R

Im [EX exp (ikX · x − iωXt)] , x < 0 ,

Im [ET exp (ikT · x − iωT t)] , x > 0 ,

where EI , ER and ET are constant real vectors and Im[z] denotes the imaginary part of a complex
number z. Give conditions on the parameters EX ,kX , ωX for X = I,R, T , such that the above
expression for the electric field E(x, t) solves Maxwell’s equations for all x 6= 0, together with an
appropriate magnetic field B(x, t) which you should determine.

(iii) We now parametrize the incident wave vector as kI = kI(cos(θI )̂ix+sin(θI )̂iz), where îx
and îz are unit vectors in the x- and z-directions respectively, and choose the incident polarisation
vector to satisfy EI · îx = 0. By imposing appropriate boundary conditions for E(x, t) at x = 0,
which you may assume to be the same as those for the time-independent case considered above,
determine the Cartesian components of the wavevector kT as functions of kI , θI , ε+ and ε−.

(iv) For ε+ < ε− find a critical value θcrI of the angle of incidence θI above which there is no
real solution for the wavevector kT . Write down a solution for E(x, t) when θI > θcrI and comment
on its form.
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37D General Relativity
In linearized general relativity, we consider spacetime metrics that are perturbatively close

to Minkowski, gµν = ηµν +hµν , where ηµν = diag(−1, 1, 1, 1) and hµν = O(ε)� 1. In the Lorenz
gauge, the Einstein tensor, at linear order, is given by

Gµν = −1

2
�h̄µν , h̄µν = hµν −

1

2
ηµν h , (†)

where � = ηµν∂µ∂ν and h = ηµνhµν .

(i) Show that the (fully nonlinear) Einstein equations Gαβ = 8πTαβ can be equivalently
written in terms of the Ricci tensor Rαβ as

Rαβ = 8π

(
Tαβ −

1

2
gαβ T

)
, T = gµνTµν .

Show likewise that equation (†) can be written as

�hµν = −16π

(
Tµν −

1

2
ηµν T

)
. (∗)

(ii) In the Newtonian limit we consider matter sources with small velocities v � 1 such
that time derivatives ∂/∂t ∼ v ∂/∂xi can be neglected relative to spatial derivatives, and the only
non-negligible component of the energy-momentum tensor is the energy density T00 = ρ. Show
that in this limit, we recover from equation (∗) the Poisson equation ~∇2Φ = 4πρ of Newtonian
gravity if we identify h00 = −2Φ.

(iii) A point particle of mass M is modelled by the energy density ρ = M δ(r). Derive the
Newtonian potential Φ for this point particle by solving the Poisson equation.

[You can assume the solution of ~∇2ϕ = f(r) is ϕ(r) = −
∫

f(r′)
4π|r − r′|d

3r′ . ]

(iv) Now consider the Einstein equations with a small positive cosmological constant,
Gαβ + Λgαβ = 8πTαβ , Λ = O(ε) > 0. Repeat the steps of questions (i)-(iii), again identifying
h00 = −2Φ, to show that the Newtonian limit is now described by the Poisson equation
~∇2Φ = 4πρ− Λ , and that a solution for the potential of a point particle is given by

Φ = −M
r
−Br2 ,

where B is a constant you should determine. Briefly discuss the effect of the Br2 term and
determine for which range of the radius r the weak-field limit is a justified approximation.

[
Hint:

Absorb the term Λgαβ as part of the energy-momentum tensor. Note also that in spherical symmetry
~∇2f = 1

r
∂2

∂r2 (rf) .
]
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38B Fluid Dynamics II
Consider a two-dimensional horizontal vortex sheet of strength U in a homogeneous inviscid

fluid at height h above a horizontal rigid boundary at y = 0 so that the fluid velocity is

u =

{
U x̂ , 0 < y < h ,
0 , h < y .

(i) Investigate the linear instability of the sheet by determining the relevant dispersion
relation for small, inviscid, irrotational perturbations. For what wavelengths is the sheet unstable?

(ii) Evaluate the temporal growth rate and the wave propagation speed in the limits of both
short and long waves. Using these results, sketch how the growth rate varies with the wavenumber.

(iii) Comment briefly on how the introduction of a stable density difference (fluid in y > h
is less dense than that in 0 < y < h) and surface tension at the interface would affect the growth
rates.
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39B Waves
(a) Show that the equations for one-dimensional unsteady flow of an inviscid compressible

fluid at constant entropy can be put in the form

( ∂
∂t

+ (u± c)
∂

∂x

)
R± = 0 ,

where u and c are the fluid velocity and the local sound speed, respectively, and the Riemann
invariants R± are to be defined.

Such a fluid occupies a long narrow tube along the x-axis. For times t < 0 it is at rest with
uniform pressure p0, density ρ0 and sound speed c0. At t = 0 a finite segment, 0 6 x 6 L, is
disturbed so that u = U(x) and c = c0 + C(x), with U = C = 0 for x 6 0 and x > L. Explain,
with the aid of a carefully labelled sketch, how two independent simple waves emerge after some
time. You may assume that no shock waves form.

(b) A fluid has the adiabatic equation of state

p(ρ) = A− B2

ρ
,

where A and B are positive constants and ρ > B2/A.

(i) Calculate the Riemann invariants for this fluid, and express u ± c in terms of R± and
c0. Deduce that in a simple wave with R− = 0 the velocity field translates, without any nonlinear
distortion, at the equilibrium sound speed c0.

(ii) At t = 0 this fluid occupies x > 0 and is at rest with uniform pressure, density and
sound speed. For t > 0 a piston initially at x = 0 executes simple harmonic motion with position
x(t) = a sinωt, where aω < c0. Show that u(x, t) = U(φ), where φ = ω(t−x/c0), for some function
U that is zero for φ < 0 and is 2π-periodic, but not simple harmonic, for φ > 0. By approximately
inverting the relationship between φ and the time τ that a characteristic leaves the piston for the
case ε = aω/c0 � 1, show that

U(φ) = aω
(

cosφ− ε sin2 φ− 3
2ε

2 sin2 φ cosφ+O(ε3)
)

for φ > 0 .
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40E Numerical Analysis
(a) For a function f = f(x, y) which is real analytic in R2 and 2-periodic in each variable,

its Fourier expansion is given by the formula

f(x, y) =
∑

m,n∈Z
f̂m,ne

iπmx+iπny, f̂m,n =
1

4

∫ 1

−1

∫ 1

−1
f(t, θ)e−iπmt−iπnθ dtdθ .

Derive expressions for the Fourier coefficients of partial derivatives fx, fy and those of the product

h(x, y) = f(x, y)g(x, y) in terms of f̂m,n and ĝm,n.

(b) Let u(x, y) be the 2-periodic solution in R2 of the general second-order elliptic PDE

(aux)x + (auy)y = f,

where a and f are both real analytic and 2-periodic, and a(x, y) > 0. We impose the normalisation

condition
∫ 1

−1
∫ 1

−1 u dxdy = 0 and note from the PDE
∫ 1

−1
∫ 1

−1 f dxdy = 0.

Construct explicitly the infinite-dimensional linear algebraic system that arises from the
application of the Fourier spectral method to the above equation, and explain how to truncate this
system to a finite-dimensional one.

(c) Specify the truncated system for the unknowns {ûm,n} for the case

a(x, y) = 5 + 2 cosπx+ 2 cosπy ,

and prove that, for any ordering of the Fourier coefficients {ûm,n} into one-dimensional array, the
resulting system is symmetric and positive definite. [You may use the Gershgorin theorem without
proof.]

END OF PAPER
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