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SECTION I

1G Linear Algebra
State a theorem classifying n× n complex matrices up to similarity.

Let α be an endomorphism of an n-dimensional complex vector space. Define the
algebraic multiplicity aλ and the geometric multiplicity gλ of an eigenvalue λ of α. Express
aλ and gλ as well as the minimal polynomial of α in terms of a representation of α using
the classification above.

Let α be represented by the 3× 3 matrix

A =




5 0 3
−1 −1 −1
−6 0 −4


 .

Find the eigenvalues of α and their algebraic and geometric multiplicities. Find the
minimal polynomial of α.

2F Analysis and Topology
Define what it means for a subset A of a topological space (X, τ) to be connected.

Let f : X → Y be a continuous map between topological spaces (X, τ) and (Y, σ).
Show that if X is connected, then f(X) is connected.

Let Y = {0, 1} be equipped with the discrete topology. Show that a topological
space (X, τ) is connected if and only if every continuous function h : X → Y is constant.

Given a subset A of a topological space (X, τ), define the closure Cl(A) of A to be
the set of all points of A together with the set of points y ∈ X such that every open set
in τ containing y contains some point of A other than y. Using the preceding part or
otherwise, show that given a connected set C ⊆ X, Cl(C) is connected.

3F Complex Analysis
Define what it means for f : U → C to be holomorphic on a domain U .

State Morera’s theorem.

Deduce that the function f defined on C by

f(z) =

∫ 1

0

etz

1 + t2
dt

is holomorphic.

Give an example to show that a holomorphic function need not possess an anti-
derivative on its domain.

[Any further results you use should be stated clearly.]
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4A Quantum Mechanics
Write down the time-independent Schrödinger equation for a particle of mass m

with wavefunction ψ(x) moving in a potential V (x).

Consider the one-dimensional potential V (x) = −V0 for |x| < a and V (x) = 0 for
|x| > a, for constant V0 > 0.

By integrating the Schrödinger equation over a small interval around x = a, analyse
the continuity of ψ(x) and ψ′(x) at x = a.

Show that

ψ(x) =

{
A exp(−η|x|) for |x| > a,
B cos(kx) for |x| < a,

is a solution of the time-independent Schrödinger equation, deriving two necessary
relationships between η and k in the process.

Draw a diagram in the (k, η) plane that indicates the locus of the lowest energy
level when k < π/(2a).

5C Electromagnetism
State Faraday’s law of induction, defining any terms that appear in the equation.

A circular wire loop has resistance R and lies in the z = 0 plane in a constant
magnetic field B = Bẑ with B > 0. The radius of the loop varies in time as r(t). What
is the current in the wire?

Distinguishing the two situations ṙ(t) > 0 and ṙ(t) < 0, draw a picture showing the
magnetic field due to the induced current. Is the magnetic field increased or decreased
inside the loop? In what direction is the Lorentz force on the wire in each case?
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6D Numerical Analysis
The composite, mid-point, quadrature rule for computing the integral

I(f) =

∫ 1

0
f(x) dx is given by

IN (f) =
1

N

N−1∑

n=0

f(xn) with xn =
1

N

(
n+ 1

2

)
.

Determine the order of convergence IN (f) → I(f) of this scheme as N → ∞ if f is at
least twice differentiable on [0, 1].

A different function f(x) is known to have a square-root singularity at x = 0, so
that f(x) = x−1/2g(x), where g(x) is analytic on [0,1]. Determine, with justification, a
sequence yn such that the quadrature

JN (f) =
2

N

N−1∑

n=0

y1/2n f(yn)

has the same order of convergence JN (f) → I(f) as the scheme above. [Hint: Consider a
change of variables in I(f).]

7H Markov Chains
A taxi driver moves between the airport A and two hotels B and C according to

the following rules: if she is at the airport, she will proceed to one of the hotels with equal
probability; if she is at a hotel, she will return to the airport with probability 3

4 and travel
to the other hotel with probability 1

4 .

(a) What is the transition matrix for the corresponding Markov chain?

(b) Suppose the driver begins at the airport at time 0.

(i) Find the probability for each of her three possible locations at time 2.

(ii) What is the probability that the driver is at the airport at time n ⩾ 1?
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SECTION II

8G Linear Algebra

(a) Letm,n ∈ N. Show that twom×n matrices A and A′ over a field F are equivalent if
and only if there exist vector spaces V,W , a linear map α : V →W and bases B,B′

of V and C,C ′ of W such that A = [α]B,C and A′ = [α]B′,C′ . [You may assume the
correspondence between composition of linear maps and products of matrices.]

Define the column rank and the row rank of an m× n matrix A over F and prove
that they are equal. [You may assume the Rank-Nullity Theorem. Other results
used should be proved.]

(b) Fix m,n ∈ N. Let [m] = {1, . . . ,m} and [n] = {1, . . . , n}. Let e1, . . . , en be the
standard basis of Cn. For x = (xj)

n
j=1 ∈ Cn, let supp(x) = {j ∈ [n] : xj ̸= 0}, and

for B ⊆ [n], let Bx be the vector in Cn with jth coordinate xj if j ∈ B and 0 if
j /∈ B.

Let v1, . . . , vm be linearly independent vectors in Cn. Show that there is an injection
f : [m] → [n] such that f(i) ∈ supp(vi) for all i ∈ [m]. [Hint: You may use the
following result. If F : [m] → P[n], where P[n] is the power set of [n], satisfies

|A| ⩽
∣∣∣
⋃

i∈A
F (i)

∣∣∣

for all A ⊆ [m] then there is an injection f : [m] → [n] such that f(i) ∈ F (i) for all
i ∈ [m].]

Using part (a), or otherwise, show that there is a subset B of [n] of size m such that
Bv1, . . . , Bvm are linearly independent.

Deduce that there is an injection f : [m] → [n] such that f(i) ∈ supp(vi) for all
i ∈ [m], and that

(
{ej : j ∈ [n]} \ {ef(i) : i ∈ [m]}

)
∪ {vi : i ∈ [m]}

is a basis of Cn.
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9E Groups, Rings and Modules
Let R be a commutative unital ring.

(a) Let M be an R-module. What does it mean for M to be free? Assuming R is
non-zero, if Rn ∼= Rm as R-modules, show that n = m.

If P and Q are R-modules such that P ⊕ Q is free, must P be free? Justify your
answer.

(b) (i) We say that an R-module P is projective if, whenever we have R-module
homomorphisms f : M → N and g : P → N with f surjective, then there exists a
homomorphism h : P → M with f ◦ h = g. Show that any free module (over an
arbitrary commutative unital ring) is projective.

(ii) Suppose now that R is a principal ideal domain. Prove that any submodule N of
a finitely-generated free module M over R is free. [Hint: If N is a submodule of Rn

for some n, you may wish to consider the composition of maps N → Rn → R, where
the first map is inclusion and the second map is projection onto the first summand.]

Deduce that a finitely-generated projective module over a principal ideal domain is
free.

10F Analysis and Topology
What does it mean for a function f : R2 → R to be differentiable at x ∈ R2? Define

the derivative Df |x and the partial derivatives D1f(x) and D2f(x) of f at x ∈ R2.

Show that if the partial derivatives of f exist in some open ball around x ∈ R2 and
are continuous at x, then f is differentiable at x.

Let f : R2 → R be given by

f(x, y) =




(x2 + y2) sin

(
1√

x2+y2

)
if (x, y) ̸= (0, 0)

0 otherwise.

Find the partial derivatives of f at every point in R2. Are D1f and D2f continuous at
(0, 0)? Is f differentiable at (0, 0)? Justify your answers.

Is it true that if f is differentiable everywhere in R2 then in a neighbourhood of each
point at least one of the partial derivatives is bounded? Give a proof or a counterexample
as appropriate.
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11G Geometry
Fix real numbers a ∈ (0, 1] and b ∈ (0,

√
2a− a2). Let f : [−4, 4] → R be an even

function that is smooth and strictly positive on (−4, 4) with the properties that

f(x) =
√

1− (3− x)2 for x ⩾ 2 + a

f(x) = b for x ∈ [−2 + a, 2− a]

f ′′ has a unique zero in (2− a, 2 + a).

Let Σ ⊂ R3 be the smooth surface defined by

x ∈ [−4, 4] and f(x)2 = y2 + z2.

(a) Sketch Σ in R3. Sketch its orthogonal projection onto the (x, z)-plane, and
mark on this diagram (without proof) the regions of Σ where its Gaussian curvature K is
positive, negative and zero respectively.

(b) Compute the integral of K over the region R ⊂ Σ where x ∈ [2 − a, 2 + a].
[You may use without proof the fact that a spherical disc of spherical radius θ has area
2π(1− cos θ).]

(c) Show that the polygons obtained by cutting R along y = 0 are geodesic polygons
only if a = 1.
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12B Complex Methods
(i) Calculate the Laplace transform of the function defined for 0 ⩽ t < ∞ by

f(t) = H(t − t0) where H is the Heaviside function defined by H(t) = 1 if t ⩾ 0 and
H(t) = 0 otherwise. (Here t0 is an arbitrary positive number.)

(ii) Use the Fourier transform and contour integration to find the Green function
defined by

−d
2G

dx2
+m2G = δ(x), G(x) → 0 as |x| → ∞,

where m > 0 and −∞ < x < +∞. Explain why this Green function makes sense for
m ∈ C with positive real part, and use it to write down a solution to

−d
2u

dx2
+m2u = f(x), u(x) → 0 as |x| → ∞.

[Take the Fourier transform Ĝ of G to be given by Ĝ(k) =
∫ +∞
−∞ e−ikxG(x)dx.]

(iii) Use the Laplace transform to obtain an integral expression for the solution
u = u(t, x) of the initial value problem

∂2u

∂t2
− ∂2u

∂x2
= 0 for −∞ < x < +∞, 0 ⩽ t < +∞

u(0, x) = 0 , ut(0, x) = f(x) .

[You may assume that u(t, x) and f(x) vanish for |x| sufficiently large.]

Part IB, Paper 4



9

13C Variational Principles
Three scalar fields, ϕ(x, t), α(x, t), and β(x, t), are each a function of the spatial

coordinates x = (x1, x2, x3) and time t. The dynamics of these fields is governed by
extremising the functional

S[ϕ, α, β] =

∫ +∞

−∞

[
− β

∂α

∂t
− 1

2
(∇ϕ+ β∇α) · (∇ϕ+ β∇α)

]
dt d3x .

Write down the Euler-Lagrange equations for ϕ, α and β.

Define the vector field
u = ∇ϕ+ β∇α .

Show that the Euler-Lagrange equations can be written as

∇ · u = 0 and
∂α

∂t
+ u · ∇α = 0 and

∂β

∂t
+ u · ∇β = 0 .

Hence show that the vector field u obeys

∂ui
∂t

+ u · ∇ui = − ∂p

∂xi
,

where p = −1
2u ·u+f(ϕ̇, α̇, β) and f(ϕ̇, α̇, β) is a function that you should determine, and

where ϕ̇ and α̇ are the partial derivatives of ϕ and α with respect to t.

14B Methods
Let a and κ ⩾ 0 be real constants. Consider the problem

∂u

∂t
+ a

∂u

∂x
= κ

∂2u

∂x2

with initial condition u(0, x) = u0(x), where u0(x) is a given function. [You may assume
u0 and u to be smooth and decreasing to zero as |x| → ∞ as needed.]

(i) For a = 0, κ > 0 write down an integral expression for the solution in terms of
the function

Kt(x) =




(4πκt)−

1
2 exp

[
− x2

4κt

]
if t > 0

0 if t ⩽ 0 .

Explain briefly why your formula for u(t, x) reduces to u0(x) when t tends to zero by
considering the behaviour of Kt in this limit, and give a sketch to illustrate.

(ii) For κ = 0, use the method of characteristics to find the solution.

(iii) For the general case with κ > 0 and a ∈ R arbitrary, find an integral expression
for the solution.
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15A Quantum Mechanics
A quantum mechanical particle moves in an inverted harmonic oscillator potential.

Its wavefunction ψ(x, t) evolves according to

iℏ
∂ψ

∂t
= −ℏ2

2

∂2ψ

∂x2
− 1

2
x2ψ.

(i) Show that there exists a solution of the form

ψ(x, t) = A(t) exp(−B(t)x2)

provided that
dA

dt
= −iℏAB

and
dB

dt
= − i

2ℏ
− 2iℏB2.

(ii) Show that B = ξ tan(ϕ+αt) solves the equation for B, where ξ and α are constants
that you should find and ϕ is a constant of integration.

(iii) Find A(t) in terms of cos(ϕ+αt). You need not calculate its normalisation explicitly.

(iv) Compute the expectation values of x̂2 and p̂2 as functions of B.

[Hint: You may use

∫∞
−∞ dx e−Cx2

x2∫∞
−∞ dx e−Cx2 =

1

2C
. ]
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16D Fluid Dynamics
A thin, horizontal layer of fluid of height h = h0 + η(x, y, t) flows with horizontal

velocity components u = (u, v, 0) relative to a rotating frame of reference with Coriolis
parameter f = (0, 0, f), in which (x, y, z) are Cartesian coordinates and where h0 and f are
constant and u and v are independent of z. When η ≪ h0, u and η satisfy the linearised
equations

∂u

∂t
+ f × u = −g∇η,

∂η

∂t
+ h0∇ · u = 0,

where g is the acceleration due to gravity and ∇ ≡ (∂/∂x, ∂/∂y, 0) is the horizontal
gradient operator.

Show that the linearised potential vorticity ω − (η/h0)f is independent of time,
where ω = ∇× u is the relative vorticity.

Suppose that η = η0 when u ≡ 0. Derive the evolution equation

∂2η

∂t2
− gh0∇2η + f2η = f2η0.

Given that the fluid starts at rest with

η0 =

{
ϵ, |x| < a
0, |x| > a

where ϵ is constant, determine the steady state η∞(x) to which the system settles. Draw
a sketch of the corresponding velocity field.
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17H Statistics
Observations {(xi, Yi)}ni=1 are made according to the model

Yi = α+ βxi + ϵi,

where {xi}ni=1 are fixed constants in R and ϵi
i.i.d.∼ N(0, σ2), for a known value of σ.

(a) Derive expressions for maximum likelihood estimators α̂ and β̂ for α and β,
respectively.

Now suppose the model is reparametrized as

Yi = α′ + β′(xi − x̄) + ϵi,

where x̄ := 1
n

∑n
i=1 xi. Let α̂

′ and β̂′ denote maximum likelihood estimators for α′ and β′,
respectively.

(b) Show that β̂′ = β̂.

(c) Show that in general, α̂′ ̸= α̂. In fact, show that α̂′ = 1
n

∑n
i=1 Yi.

(d) What is the distribution of α̂′? Construct a 95% confidence interval for α′ based on
α̂′.

(e) Now suppose σ is unknown. Construct a 95% confidence interval for α′ in this
setting, and explain why it has the specified coverage.

[Standard results can be quoted without proof.]
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18H Optimisation

(a) Describe Newton’s method for minimising a function f : Rd → R. Denote by x∗ a
minimiser of f , and by xk the kth iterate in Newton’s method. Stating clearly any
assumptions f must satisfy, provide an upper bound on f(xk)− f(x∗).

(b) Suppose a ⩾ 1. Consider the following algorithm used by the ancient Babylonians
to approximate

√
a: set x0 ⩾ 1 and, for each k ⩾ 0, iteratively define

xk+1 =
1

2

(
xk +

a

xk

)
.

Prove that all the iterates lie in [1,∞). Derive the algorithm above as a consequence
of applying Newton’s method for minimising a suitable function f : [1,∞) → R.

(c) For a given a ⩾ 1, identify a range of values for x0 such that xk → √
a as k → ∞.

Derive an upper bound on |xk − √
a|. [Hint: You may find the result in part (a)

useful, as well as the equation x3 − 3ax+ 2a3/2 = (x−√
a)2(x+ 2

√
a).]

END OF PAPER
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