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1C

(a) Using Cartesian coordinates, show that

(u · ∇)u = 1

2
∇(u · u) − u× ( ∇ × u) ,

and hence that

∇ × ((u · ∇)u) = ( ∇ · u)( ∇ × u) + (u · ∇)( ∇ × u) − (( ∇ × u) · ∇)u .[8]

(b) Consider a vector field v(x, y, z), which may be expressed in Cartesian coordi-
nates as

v =

(
−

κy

2π[x2 + y2]
,

κx

2π[x2 + y2]
, 0

)
.

Show that ∇ × v = 0 everywhere except along the line x = y = 0 .[6]

Show that the line integral ∮

C
v · dr (∗)

is equal to zero for all curves C = ∂S in the x-y plane which bound open surfaces S (also
in the x-y plane) which do not intersect the line x = y = 0 . What is the value of the
integral (*) if the curve C bounds such a surface which does intersect this line?[6]

[You may find it useful to use cylindrical polar coordinates.]

2C

Consider diffusion inside a circular tube (with very small cross-section) and circum-
ference 2π . Let x denote the arc-length parameter −π 6 x 6 π , so that the density of
the diffusing substance u satisfies (for t > 0)

∂u

∂t
= λ

∂2u

∂ x2
,

with specified initial condition u(x, 0) = f(x) for some function f(x). What are the
appropriate boundary conditions to impose on u at x = ±π for t > 0 ?[3]

Use separation of variables to express u(x, t) in terms of an appropriate infinite
series.[7]

Compute explicitly the coefficients of the above series in the case that f(x) =
(π − |x|)2, and identify the density distribution of the substance u as t → ∞ .[10]
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3C

Consider a linear differential operator L defined by

Ly = −
1

x2

d

dx

(
x2
dy

dx

)
+ y, 0 < x < +∞.

By writing y = z/x or otherwise, find those solutions of Ly = 0 which are either
(i) bounded as x→ 0 , or (ii) bounded as x→ +∞ .[5]

Find the Green’s function G(x, ξ) satisfying

LG(x, ξ) = δ(x− ξ) ,

such that G is bounded as x→ 0 and G is bounded as x→ +∞ .[8]

Use G(x, ξ) to solve

Ly =

{
1 , for 0 6 x 6 R ,
0 , for x > R ,

with y bounded as x→ 0 and x→ +∞ .[7]

[It is convenient to consider the solution for x > R and x < R separately.]
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4C

Calculate the Fourier transform of the function

g(x) = e−λ|x| ,

where λ is a positive constant, and hence or otherwise calculate the Fourier transform of
the function

h(x) =
1

x2 + µ2
,

where µ is a positive constant.[8]

Consider Laplace’s equation for ψ(x, y) in the half-plane with prescribed boundary
conditions at y = 0 , i.e.

∂2ψ

∂ x2
+
∂2ψ

∂ y2
= 0 ; −∞ < x < ∞ , y > 0 ,

where ψ(x, 0) = f(x) is a known function with a well-defined Fourier transform, and where
ψ tends to zero as y → ∞ , and f(x) → 0 as |x| → ∞ .

By taking the Fourier transform with respect to x, and by applying the convolution
theorem (which may be quoted without proof) show that

ψ(x, y) =
y

π

∫ ∞

−∞

f(u)

(x− u)2 + y2
du .[8]

Find (in closed form) the solution when

f(x) =

{
c = constant , for |x| < a ,
0 , otherwise .

[4]
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5B What is (i) an eigenvalue, and (ii) an eigenvector, of a complex n × n matrix A?
Show that A has at least one eigenvector.[3]

Give an example of a non-diagonalizable n× n matrix (for some n).[2]

What is a Hermitian matrix? Explain briefly why a Hermitian matrix can always
be diagonalized.[3]

In the remainder of this question A is a Hermitian matrix. Now assume that ei,
for i = 1, . . . n, is a complete set of eigenvectors for A, with corresponding eigenvalues λi.
Prove that the eigenvalues λi are real.[1]

Assume from now on that all the eigenvalues are negative: λi < 0.

Obtain complete sets of eigenvectors and eigenvalues for A−1 and An for all
n = 1, 2 . . .[4]

Prove that

A−1 =

∫ ∞

0

etAdt.

[7]

[You may use without proof that any complex polynomial has a complex zero. If B is

a matrix then eB =
∑∞

n=0
Bn/(n!). If B(t) is a matrix depending on t with entries Bij(t)

then
∫ ∞
0
B(t)dt means the matrix with entries

∫ ∞
0
Bij(t)dt, when these integrals exist. ]

6B

(a) Give a real linear transformation x = Ly which converts the quadratic form
Q1(x) = x 2

1
+ 4x1x2 + 5x 2

2
+ 6x 2

3
into Q̃1(y) = y 2

1
+ y 2

2
+ y 2

3
. What is the corresponding

result for the quadratic form Q2(x) = x 2

1
+ 4x1x2 + 5x 2

2
− 6x 2

3
?[5]

(b) Define the trace tr(A) of a square matrix A and prove that tr(AB) = tr(BA).
For which complex numbers c do there exist n× n matrices A,B such that

AB −BA = cI ,

where I is the identity matrix? For each complex number c either give an example or
prove the non-existence of such matrices.[6]

(c) Let A(ǫ) be a symmetric n × n matrix for each real ǫ. The smallest eigenvalue
of A(ǫ) is λ(ǫ), with corresponding real eigenvector x = x(ǫ) normalized so that xT x = 1
for all ǫ, where T denotes transpose. Assuming that A(ǫ), λ(ǫ),x(ǫ) vary smoothly with ǫ,
show that

dλ

dǫ

∣∣∣∣
ǫ = 0

= xT dA

dǫ
x

∣∣∣∣
ǫ = 0

,

where T denotes transpose.[9]
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7A

Obtain the Cauchy-Riemann equations for the analytic function

f(z) = u(x, y) + iv(x, y) .
[2]

Show that:

(i) u and v satisfy Laplace’s equation, ∇
2u = ∇

2v = 0 ;[2]

(ii) the level sets u = constant and v = constant are orthogonal, ∇u · ∇v = 0 ;[2]

(iii) every stationary point of u is a stationary point of v and conversely;[2]

(iv) stationary points for which

∣∣∣∣
∂xx u ∂xy u
∂yx u ∂yy u

∣∣∣∣ 6= 0 must be saddle points;
[4]

(v) if f(z) = u(x, y) + iv(x, y) and g(z) = s(x, y) + it(x, y) are analytic functions, then
so is g(f(z)), and hence deduce that s(u(x, y), v(x, y)) satisfies Laplace’s equation.[8]

8C

Show that the origin is an ordinary point, and that x = 1 and x = −1 are regular
singular points of the equation

(1 − x2)
d2y

dx2
− x

dy

dx
+ p2y = 0 , (∗)

where p is a real constant.[4]

You may assume that there are two independent series solutions of the form

yq(x) = xq
∞∑

n=0

an x
n , q = 0 , 1 .

Find the recurrence relations for an for the two cases, and show that the series converge
for |x| < 1 .[6]

Show that polynomial solutions Tm(x) exist for p = m , where m is a non-negative
integer. With the condition Tm(1) = 1 , calculate all the coefficients for the cases
m = 0, 1, 2, 3 .[6]

For −1 6 x 6 1 make the substitution x = cos θ, with 0 6 θ 6 π, in the differential
equation (*). Hence, or otherwise, show that Tm(x) = cos(m cos−1 x) for any non-
negative integer m.[4]
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9C

State the Euler equation obtained by making stationary

F [y] =

∫ b

a
f(x, y, y′) dx ,

with fixed values of y(a) and y(b), and show that if f = f(y, y′) is not an explicit function
of x, then

y′
∂f

∂y′
− f = A ,

where A is a constant.[6]

In an optical medium occupying the region 0 < y < h, the speed of light is

c(y) =
c0

(1 − ky)1/2
, (0 < k < 1/h) .

Show that the paths of light rays in the medium are parabolic.[8]

Show also that, if a ray enters the medium at (−x0, 0) and leaves it at (x0, 0), then

(k x0)
2 = 4 k y0(1 − k y0) ,

where y0 (< h) is the greatest value of y attained on the ray path.[6]
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10C

Consider a Sturm-Liouville problem:

−
d

dx

(
p(x)

dy

dx

)
+ q(x) y − λw(x) y = 0 ,

defined for a 6 x 6 b , with p > 0 and w > 0 on the interval, and with boundary
conditions y(b) = y(a) = 0 . You may assume that this problem has a complete infinite
set of orthonormal eigenfunctions yi (i = 0, 1, 2, . . .) with associated (ordered) eigenvalues
λ0 < λ1 < λ2 < . . . .

Define a class of trial functions ytrial(x) such that

ytrial(x) = Ay0(x) +A

∞∑

i=1

ci yi , (†)

for some non-zero constant A . Define

Λ[y] =

∫ b
a (py′ 2 + qy2) dx

∫ b
a y

2w dx
=

F [y]

G[y]
.

Show that

λtrial ≡ Λ[ytrial] =
λ0 +

∑∞
i=1

c 2

i λi

1 +
∑∞

i=1
c 2

i

. (∗)[4]

By taking variations of Λ , F and G explicitly, for general y satisfying boundary
conditions of the above form, show that the stationary values of Λ[y] are the eigenvalues
λi, and hence deduce that Λ[y] is bounded below by λ0 . (Euler’s equation may be quoted
without proof.)[6]

Consider the specific problem

d2y

dx2
+ λy = 0 , 0 6 x 6 1 , y(0) = y(1) = 0 .

Generate an estimate λtrial for the smallest eigenvalue λ0 by using the trial function
ytrial = x(1 − x) .[4]

Represent ytrial = x(1 − x) as an infinite series of the form given in (†) for this
particular problem, and thus derive an expression for the ratio

c 2

1
(λ1 − λ0)

(λtrial − λ0)
.[6]

END OF PAPER
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