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(i) Using Cartesian coordinates, show that for arbitrary vector fields A(x, y, z) and
B(x, y, z)

∇ · (A×B) = B · (∇×A)−A · (∇×B) .

[6]

(ii) State the divergence theorem, and use it to show that for a scalar field a(x, y, z) and
vector field B(x, y, z)

∫ ∫ ∫

V
∇a · (∇×B) dV = −

∫ ∫

S
(∇a×B) · n̂ dS , (∗)

where V is a given volume, and n̂ is the unit vector outward normal to its surface,
S. [6]

(iii) Consider the particular case a = xy + z2 and B = yi− yzj+ xk, for Cartesian unit
vectors i, j, and k.
Verify both sides of (∗), where V is a circular cylinder of height h and radius 1, with
base x2 + y2 = 1 at z = 0. [8]
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A damped wave on a string can be described by the equation

utt = c2uxx − αut ,

where subscripts denote partial derivatives and α and c are constants.

(i) Use the method of separation of variables to find two ordinary differential equations. [4]

(ii) Consider a string between −L 6 x 6 L with fixed endpoints u(x = −L) = u(x =
L) = 0. If the string is plucked in the centre, we might expect the solutions to be
symmetric about x = 0. Show that the general solution for symmetric disturbances
can be written in the following form

u(x, t) =
∞∑

n=1

e−αt/2 cos
(nπx

2L

)
Re

[
Ane

iωnt +Bne
−iωnt

]
, (∗)

where n is an odd integer and Re denotes real part. [6]

(iii) Give an expression for ωn as a function of α, n, L and c. How small must the damping
coefficient, α, be for oscillatory solutions to exist? Describe what happens if α < 0. [3]

(iv) If the string is plucked so that at t = 0

∂u

∂t
= 0, and u(x, t = 0) = e−|x|/l ,

find the coefficients An and Bn in (∗). How do the coefficients simplify in the limit
when l ≪ L, as required to impose u(x = −L) = u(x = L) = 0? [7]
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(i) Find the general solution y(x) to the homogeneous second-order linear differential
equation

d2y

dx2
− 1 + x

x

dy

dx
+
y

x
= 0 .

[6]

[Hint: Look for a particular solution of the form yp(x) = g(x)ex.]

(ii) Find the Green’s function for this equation in the region −1 6 x 6 1, subject to the
homogeneous boundary conditions y(−1) = 0 and y(1) = 0. [8]

(iii) Use the Green’s function found above to solve the inhomogeneous differential
equation

d2y

dx2
− 1 + x

x

dy

dx
+
y

x
= x ,

subject to the same boundary conditions. [6]
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The Fourier transform f̃(k) of a function f(x) is defined by

f̃(k) =

∫ ∞

−∞
e−ikxf(x)dx ,

and the correlation h(x) between two functions f(x) and g(x) is defined by

h(x) =

∫ ∞

−∞
(f(y))∗ g(x+ y)dy ,

where ∗ denotes a complex conjugate.

(i) Prove that

h̃(k) =
(
f̃(k)

)∗
g̃(k) .

[6]

(ii) Use this result to prove Parseval’s theorem

∫ ∞

−∞
|f(x)|2dx =

1

2π

∫ ∞

−∞
|f̃(k)|2dk .

[6]

(iii) Verify Parseval’s theorem for the following function

f(x) =

{
1 |x| 6 1 ,

0 |x| > 1 .

[8]

[Hint:

∫ ∞

0

sinx cos x

x
dx = π/4.]
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(i) If M is an invertible complex matrix with Hermitian conjugate M † and inverse M−1

show that
(M †)−1 = (M−1)† .

[2]

(ii) If A is an anti-Hermitian matrix, i.e. one such that A† = −A, show, by diagonalizing
iA, that

|det(1 +A)|2 > 1 ,

and hence that 1 +A is always invertible. [6]

(iii) If A is an anti-Hermitian matrix, show that

U = (1−A)(1 +A)−1 (∗)

is a unitary matrix, that is U † = U−1. [6]

(iv) If U is a unitary matrix such that 1 + U is invertible, show that there is a unique
matrix A satisfying (∗). Show that the matrix A is indeed anti-Hermitian. Give an
example of a unitary matrix for which 1 + U is not invertible. [6]
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(i) If M is an anti-symmetric n× n matrix show that

detM = (−1)n detM ,

and hence if n is odd, detM must vanish. [2]

(ii) If M is a real anti-symmetric n × n matrix show that M2 is a real symmetric non-
positive matrix, i.e.

xTM2x 6 0

for all vectors x, where T denotes transpose. Hence show that if n is odd then M2

must have at least one vanishing eigenvalue. [3]

(iii) If e1 is an eigenvector of M2 with non-vanishing eigenvalue λ1 = −µ2
1
, with µ1 > 0,

show that e2 = Me1 is also an eigenvector of M2, orthogonal to e1 with the same
eigenvalue. [5]

(iv) By considering the remaining eigenvectors, e3, . . . , en, conclude that the non-vanishing
eigenvalues of M2 occur in, not necessarily distinct, pairs. [4]

(v) Hence show, using the basis of eigenvectors of M2 , that the original matrix M may
be cast in block diagonal form with each block being either 2 × 2 anti-symmetric
with entries ±µ1, ±µ2, . . . or a block with zero entries. [6]
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(i) Write down the Cauchy Riemann equations for the real and imaginary parts, u, v of
the analytic function f(z) = u(x, y)+ iv(x, y), where z = x+ iy and hence show that
the level sets, u = constant and v = constant, are orthogonal, and that |∇u| = |∇v|. [3]

(ii) Show that u satisfies Laplace’s equation ∇2u = (∂2x+∂
2
y)u = 0, where ∂x = ∂

∂x , ∂y =
∂
∂y . [2]

(iii) Using the analytic function f(z) = cosh−1 z, show that the level sets u = constant
and v = constant form an orthogonal system of ellipses and hyperbolae. [5]

(iv) Hence show that φ = u − cosh−1(
√
2) is a solution of Laplace’s equation which

vanishes on the ellipse
x2

2
+ y2 = 1 .

How does φ behave as x, y → ∞? [5]

(v) If
F (z, z̄) = z̄H(z) +G(z) = U(x, y) + iV (x, y) ,

where H(z) and G(z) are analytic functions of z and z̄ = x− iy, show that U and V
satisfy the fourth order partial differential equations

∇4U = (∂2x + ∂2y)(∂
2

x + ∂2y)U = 0

∇4V = (∂2x + ∂2y)(∂
2

x + ∂2y)V = 0 .

[5]
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(i) Find a series solution of the differential equation

(1− x3)y′′ − 6x2y′ − 6xy = 0

subject to the boundary conditions y(0) = 1 , y′(0) = 0. [5]

(ii) Sum the series and verify that the sum satisfies the differential equation. [5]

(iii) If Pn(x) is a Legendre Polynomial, that is a polynomial of degree n satisfying
Legendre’s equation

d

dx

(
(1− x2)

dy

dx

)
+ n(n+ 1)y = 0 ,

find the equation satisfied by v(x) if y = v(x)Pn(x) is a solution of Legendre’s
equation. [3]

(iv) Give the general solution of your equation in terms of an explicit integral. [2]

(v) Hence show that any solution of Legendre’s equation which is linearly independent
of Pn(x) must behave like a logarithm of 1± x near x = ∓1. [3]

(vi) How do those solutions of Legendre’s equation which are bounded as |x| → ∞ behave
as |x| → ∞? [2]
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(i) Write down the Euler-Lagrange equations governing the stationary values of the
functional

I[y(x)] =

∫ b

a
F (y, y′, x)dx

among functions whose endpoint values y(a) and y(b) are fixed. [2]

(ii) Derive first integrals of the Euler-Lagrange equations in the cases

(a) the integrand F has no explicit dependence on y, F = F (y′, x) , [1]

(b) the integrand F has no explicit dependence on x, F = F (y, y′) . [3]

(iii) Suppose
F = y

√
1 + (y′)2 − λy ,

obtain a first integral . [2]

(iv) If y′ = tanψ, and assuming that a solution exists for y > 0 with a maximum at
which ψ = 0, y = y0 and y0 > 0, find an expression for λ in terms of ψ, y, y0 with
y0 > y. [4]

Hence show that for solutions of this type λ > 1. [2]

(v) Show that if ψ = α at y = y1, where y0 > y1, then for y0 > y > y1,

sin2(
ψ

2
) =

y1
y

y0 − y

y0 − y1
sin2(

α

2
) .

[6]
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The vertical displacement of the skin of a drum with circular cross section and
radius a satisfies

∇2u− 1

c2
∂2u

∂t2
= 0 .

(i) If u = eiωtR(r), where r, θ are plane polar coordinates, find an ordinary differential
equation satisfied by R(r) and show that it is in self-adjoint form with a certain
weight function which should be specifed. You may assume that in plane polar
coordinates

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
.

[4]

(ii) Show that the boundary condition u = 0 at r = a defines an eigenfunction problem,
with real and positive eigenvalues λ such that the frequencies ν = ω

2π are real. [4]

(iii) Show that the eigenfunctions with distinct eigenvalues are orthogonal with respect
to a suitable inner product which should be specified. [4]

(iv) Obtain an upper bound for the lowest non-vanishing frequency ν, using the trial
function f(r) = (1− ( ra)

p) and picking the constant p so as to give the best possible
bound. [8]

END OF PAPER
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