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1C

(i) Using Cartesian coordinates show that

∇× (∇× u) = ∇(∇ · u)−∇2u ,

and that

∇× (u× v) = u(∇ · v)− v(∇ · u) + (v · ∇)u− (u · ∇)v ,

where u and v are three-dimensional vector fields. [6]

(ii) State the divergence theorem and use it to show that

∫

V
[G · (∇× F)− F · (∇×G)] dV =

∫

S
(F×G) · n̂ dS ,

where F and G are three-dimensional vector fields, V is a given volume with surface
S, and n̂ is the outward unit vector normal to S. [6]

(iii) Let V be the volume bounded by the plane z = 0 and the paraboloid z = 4−x2− y2
with surface S and outward unit normal vector n̂. If

F = (xzsin(yz) + x3, cos(yz), 3zy2 − ex
2+y2) ,

find
∫
S F · n̂ dS . [8]
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The velocity, u(x, t), of a viscous fluid satisfies

∂u

∂t
= ν

∂2u

∂x2
, (⋆)

where ν is a positive constant.

(i) Consider the flow of a semi-infinite viscous fluid above a flat oscillating plate with
boundary conditions u(0, t) = U0cos(ωt) and limx→∞ u(x, t) = 0. Using the method
of separation of variables, solve (⋆) for u(x, t). [10]

[Hint: Consider the complex velocity, v, such that u = R(v) where R denotes the
real part.]

(ii) A viscous fluid satisfying (⋆) is confined between two stationary parallel plates,
separated by a distance L. At t = 0, the fluid velocity is

u(x, 0) = U0

(
x

L
− x2

L2

)
,

and the fluid remains at rest at each plate with boundary conditions u(0, t) = 0 and
u(L, t) = 0 for t > 0. Using the method of separation of variables, find a series
solution for the velocity u(x, t) for t > 0. Write down an expression for the series
coefficients. What is the velocity in the limit as t→ ∞? [10]
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A beam lies along the x-axis with its ends at x = 0 and x = 1. The transverse
displacement y(x) of the beam when a force per length f(x) is applied satisfies

d4y

dx4
= f(x) .

The boundary conditions are y = 0 and dy/dx = 0 at both x = 0 and x = 1. The
displacement can be written in terms of a Green’s function G(x, ξ) as

y(x) =

∫
1

0

G(x, ξ)f(ξ) dξ .

What conditions must the Green’s function satisfy at x = 0 and x = 1 and at x = ξ? [4]

Construct the Green’s function to show that

G(x, ξ) =

{
−1

6
x2(ξ − 1)2(x+ 2xξ − 3ξ) for x < ξ ,

−1

6
ξ2(x− 1)2(ξ + 2xξ − 3x) for x > ξ .

[12]

Consider two points x1 and x2 along the beam. A force f(x) = δ(x − x1) causes a
displacement y1(x2) at x2. If the force is instead f(x) = δ(x−x2), the displacement at x1
is y2(x1). Show that y1(x2) = y2(x1). [4]
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(i) The Fourier transform of a function f(x) is given by

f̃(k) =

∫
∞

−∞

f(x)e−ikxdx .

Write down the corresponding expression for the inverse Fourier transform. [2]

(ii) Let g(x) = xnf(x) where n is a positive integer. Derive an expression for g̃(k),
written in terms of derivatives of f̃(k) with respect to k. [4]

(iii) Using the result from part (ii), or otherwise, find the Fourier transform of the
following function:

f(x) = xe−x2

. (⋆)

[Hint:
∫
∞

−∞
e−x2

dx =
√
π.] [6]

(iv) Derive Parseval’s theorem:

∫
∞

−∞

[f(x)]∗g(x)dx =
1

2π

∫
∞

−∞

[f̃(k)]∗g̃(k)dk .

[4]

(v) The energy, E, of a function f(x) is defined as

E =

∫
∞

−∞

|f(x)|2dx .

Find the energy of the function defined in (⋆), and verify that the result is consistent
with Parseval’s theorem. [4]
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(i) Define a Hermitian matrix and show that its eigenvalues are real. Define a unitary
matrix and show that its eigenvalues have unit modulus. [7]

(ii) Consider two n× n matrices U and H that are related by

U = eiH ≡
∞∑

m=0

(iH)m

m!
.

If H is Hermitian, show that U is unitary. [5]

(iii) Suppose that a n×n unitary matrix can be written as U = M+ iN, where M and N

are Hermitian matrices. You may assume that M and N have n distinct eigenvalues.

Show that M and N have the same eigenvectors and determine the eigenvalues of M
and N in terms of the eigenvalues of U. [8]
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(i) Let M be a n × n real symmetric matrix. Explain how to construct an orthogonal
matrix O such that OTMO = D, where D is a real diagonal matrix. [4]

(ii) The quadratic form associated with a 3× 3 real symmetric matrix M is

Q(x) ≡ x
T
Mx =

3∑

i=1

3∑

j=1

xiMijxj ,

where xT =
[
x1 , x2 , x3

]
.

Let Σ be the surface in R
3 defined by

Q(x) = k = const. (⋆)

Define the change of coordinates that brings (⋆) into the form [2]

λ1x
′2
1 + λ2x

′2
2 + λ3x

′2
3 = k .

For k > 0, describe Σ for the following cases: [4]

(a) λ1 = λ2 = λ3 > 0 ;

(b) λ1 = λ2 > 0, λ3 < 0 ;

(c) λ1 = 0, λ2 > 0, λ3 > 0 .

(iii) Consider the quadratic surface Σ defined by

x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3 = 3 .

Show that Σ has an axis of rotational symmetry and find its direction. [10]
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(i) Derive the Cauchy–Riemannn conditions satisfied by the real part u(x, y) and the
imaginary part v(x, y) of an analytic function f(z) of the complex variable z = x+iy,
and show that u and v each satisfy Laplace’s equation in two dimensions, i.e., ∇2u = 0
and ∇2v = 0. [4]

(ii) Show that the equation ∣∣∣∣
z − a

z + a

∣∣∣∣ = λ

defines a family of circles in the complex plane and find their centres and radii in
terms of the real and positive parameters a and λ. [6]

(iii) A real function V (x, y) satisfies ∇2V = 0 in two dimensions in the half-plane x > 0
outside a circle of radius R centred on x = d and y = 0 (with d > R). The function
takes values V = 0 on x = 0 and V = −V0 on the circle. By considering the real
part of the complex function

f(z) = ln

(
z − a

z + a

)
,

or otherwise, show that

V =
V0

cosh−1(d/R)
ln

∣∣∣∣
z − a

z + a

∣∣∣∣ ,

for a suitable constant a that should be determined. [10]
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Consider the ordinary differential equation

x2
d2y

dx2
+ 2x

dy

dx
+

[
x2 − l(l + 1)

]
y = 0 ,

where l is a non-negative integer. Find and classify the singular points of the equation. [4]

The differential equation admits two linearly-independent solutions of the form

y(x) = xσ
∞∑

n=0

anx
n , (a0 6= 0) .

Determine the two possible values of σ and the recursion relations satisfied by the an in
each case. [10]

Using these recursion relations, verify that, for a suitable choice of a0, the solution
that is regular at x = 0 is

y(x) = 2lxl
∞∑

s=0

(−1)s(s + l)!

s!(2s+ 2l + 1)!
x2s .

Express this series for l = 0 in terms of elementary functions and verify directly that your
result satisfies the differential equation. [6]
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(i) Derive the Euler–Lagrange equation for the function q(t) corresponding to station-
ary values of the functional

S[q(t)] =

∫ t1

t0

L(t, q(t), q̇(t)) dt , q̇ ≡ dq/dt ,

for fixed q(t0) and q(t1). [5]

What is the first integral of the Euler–Lagrange equation if L is independent of t? [5]

(ii) A mass M is attached to a massless hoop of radius R. The hoop lies in a vertical
plane and is free to rotate about its fixed center. A massless, inextensible string
connects M to a second mass m < M as shown in the figure (i.e., the string
winds part way around the hoop, then rises vertically up and over a massless
pulley). Assume that m moves only vertically in a uniform gravitational field (with
gravitational acceleration g). You may ignore friction.

The Lagrangian L is the difference of the kinetic and potential energies of the
system. From the Euler–Lagrange equation find the equation of motion for the
angle of rotation of the hoop, 0 6 θ(t) 6 π/2.

Derive the equilibrium angle θ0. Consider small oscillations around θ0, i.e., let
θ(t) = θ0 + δ(t), where |δ| ≪ θ0. Show that the angular frequency of oscillations is

ω =

(
M −m

M +m

)1/4 √ g

R
.

Comment on the limit M ≫ m. [10]
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(i) The Sturm–Liouville equation is

−
[
p(x)ψ′

]
′

+ q(x)ψ = λw(x)ψ , (⋆)

where p(x) > 0 and w(x) > 0 for a 6 x 6 b, and primes denote differentiation
with respect to x. Show that finding the eigenvalues λ is equivalent to finding the
stationary values of the functional

Λ[ψ(x)] =

∫ b
a (pψ

′2 + qψ2)dx
∫ b
a wψ

2 dx
,

if suitable boundary conditions are satisfied at x = a and x = b (which should be
stated). [6]

Let λ0 be the lowest eigenvalue and ψ0 be the associated eigenfunction. A general
function ψ̃ can be written as

ψ̃(x) = c0ψ0(x) +

∞∑

i=1

ciψi(x) ,

where c0 and ci are constants, and ψi (i = 0, 1, 2, . . .) are orthonormal eigenfunctions
of (⋆) with eigenvalues λi > λ0. Show that

λ̃ ≡ Λ[ψ̃(x)] =
λ0 +

∑
∞

i=1
|ai|2λi

1 +
∑

∞

i=1
|ai|2

,

where ai ≡ ci/c0. Explain how this result allows you to estimate the lowest
eigenvalue λ0. [6]

(ii) Consider the Schrödinger equation

−ψ′′ + x2ψ = λψ ,

for 0 6 x < ∞ and with the boundary conditions ψ(0) = 0, limx→∞ ψ(x) = 0.
Using the trial function ψ̃ = xe−αx with α a real positive constant, estimate the
lowest eigenvalue λ0. [8]

END OF PAPER
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