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1A

(i) The inner product of two functions f(x) and g(x), defined on the closed interval
[a, b], is

〈f |g〉 ≡
∫ b

a

f∗gw dx ,

where w(x) > 0. Consider the operator

L ≡ − 1

w(x)

[
d

dx

(
p(x)

d

dx

)
− q(x)

]
, a 6 x 6 b ,

where p(x) > 0.

(a) Derive the boundary conditions under which L is self-adjoint over the range
[a, b], with respect to the inner product defined above. [3]

(b) Show that any two eigenfunctions of L with distinct eigenvalues are orthogo-
nal. [3]

(ii) Consider the eigenvalue problem

Ly ≡ −x2y′′ − xy′ − y = λy , (⋆)

with boundary conditions y(1) = y(e) = 0.

(a) Show that (⋆) can be written in Sturm–Liouville form and identify the
functions p(x), q(x) and w(x). [2]

(b) Find the eigenvalues and orthonormal eigenfunctions of L. [6]

(c) Derive the solution to the inhomogeneous equation Ly = 1 as an eigenfunction
expansion. [6]
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2B

(i) Let Ψ(r, θ) be an axisymmetric solution of Laplace’s equation in spherical polar
coordinates,

1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
= 0 .

By the method of separation of variables, derive the general solution

Ψ(r, θ) =
∞∑

ℓ=0

(
aℓr

ℓ +
bℓ
rℓ+1

)
Pℓ(cos θ) .

Here, Pℓ(cos θ) is the ℓth Legendre polynomial, i.e., the solution of the differential
equation

d

dx

(
(1− x2)

dPℓ

dx

)
+ ℓ(ℓ+ 1)Pℓ = 0 ,

with x = cos θ, which is regular at x = ±1. [8]

(ii) A surface charge density σ(θ) = A sin2 θ lies on the surface of a sphere of radius R
centred on the origin. The electrostatic potential Ψ(r, θ) satisfies Laplace’s equation
for r 6= R, is continuous and regular everywhere, and tends to zero as r → ∞. The
surface charge causes a discontinuity in the radial gradient of Ψ across r = R given
by

lim
ǫ→0

(
∂Ψ

∂r

∣∣∣∣
R+ǫ

− ∂Ψ

∂r

∣∣∣∣
R−ǫ

)
= −σ .

Determine Ψ for r < R and r > R. [12]

[Note: P0(x) = 1 and P2(x) = (3x2 − 1)/2.]
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3B

(i) Two scalar functions φ(r) and ψ(r) are defined in a volume V of three-dimensional
space with boundary S. Show that

∫

V

[
φ∇2ψ − ψ∇2φ

]
dV =

∫

S

[φ n̂·∇ψ − ψ n̂·∇φ] dS ,

where n̂ is the outward-directed unit normal to S. [3]

(ii) Suppose that φ(r) satisfies
∇2φ+ k2φ = 0 ,

for some real and positive k.

(a) Introducing the Green’s function G(r, r′) that satisifes

∇2G(r, r′) + k2G(r, r′) = δ(3)(r− r′) ,

show that

φ(r′) =

∫

S

φ(r)n̂·∇G(r, r′) dS

for r′ in V and a suitable boundary condition for r on S that you should
specify. For the case that V is all space, show that a suitable Green’s function
is

G(r, r′) = A
eik|r−r

′|

|r− r′| ,

where the constant A should be determined. [10]

(b) Determine the Green’s function for the case that V is the half-space z > 0.
Assuming that φ falls to zero sufficiently rapidly as |r| → ∞, show that

φ(r′) = − ik

2π

∫

z=0

eikR

R

(
1 +

i

kR

)
cos θφ(r) dS ,

where R is the magnitude of R ≡ r′ − r, which makes an angle θ with the
positive z-direction, and the integral is over the plane z = 0. [7]
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4B

(i) For real a and b, with a > b > 0, show that

z2 + 2i(a/b)z − 1 = 0

has a single solution within the unit circle |z| = 1 in the complex plane. [4]

By evaluating a suitable contour integral, show that

∫ 2π

0

dθ

a+ b sin θ
=

2π√
a2 − b2

for real a and b, with a > b > 0. [6]

(ii) By integrating the complex function

f(z) =
ln(z + i)

z2 + 1

along the real axis, evaluate the real integral

∫ ∞

0

ln(x2 + 1)

x2 + 1
dx .

[10]
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5C

The Fourier transform in x of a function u(x, t) is given by

ũ(k, t) =

∫ ∞

−∞
u(x, t)e−ikxdx . (⋆)

(i) Consider the following partial differential equation for u(x, t):

∂2u

∂t2
+ 2γ

∂u

∂t
+ γ2u = c2

∂2u

∂x2
, (⋆⋆)

where γ and c are real constants. Write down the corresponding ordinary differential
equation for ũ(k, t), defined in (⋆). You may assume that u and its derivatives vanish
as |x| → ∞. [2]

(ii) Seeking solutions of the form ert for constant r, find the general solution to the
Fourier transform of (⋆⋆) for ũ(k, t), and hence find the general solution for u(x, t). [8]

(iii) Solve (⋆⋆) for u(x, t) subject to the following initial conditions at t = 0:

u = e−|x| and
∂u

∂t
= 0 .

[10]
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6C

(i) Write down the transformation law for a tensor of order n. Use this to define an
isotropic tensor. [2]

(ii) Consider a three-dimensional vector field with Cartesian components ui. Show that
∂ui/∂xj is an order 2 tensor. [4]

(iii) Write down the transformation law for an axial vector. Under what conditions does
an axial vector obey the same transformation law as a vector? Show that the curl of
ui is an axial vector field. [6]

(iv) Show that ∂ui/∂xj can be decomposed into the following terms

∂ui
∂xj

= pδij + sij + ǫijkωk , (⋆)

where sij is a symmetric, traceless tensor, ωk is an axial vector field, ǫijk is the
Levi–Civita symbol, and δij is the Kronecker delta. Find p, sij, and ωk, expressed
in terms of ui. [4]

(v) Consider the three-dimensional vector field

ui = (ax2, bx1, 0) ,

where a and b are constants. Find ωk and the principal values and principal axes of
sij, where ωk and sij are defined in (⋆). [4]
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7C

A loaded string, sketched below, consists of a string stretched tightly between two
vertical walls with three beads of equal mass m, numbered 1, 2, and 3 as shown, attached
at regular intervals with spacing l. Assume the beads are constrained to move vertically
and that the tension in the string, τ , is positive and constant. Let zi be the upward
displacement of the ith bead (neglect gravity).

l l l l

1 2 3

(i) For small displacements, |zi| ≪ l, the potential energy, V , stored in the string is

V =
τ

2l

(
z21 + (z1 − z2)

2 + (z2 − z3)
2 + z23

)
.

Find the normal modes of oscillation and their associated frequencies. Sketch the
displacements associated with each normal mode. [12]

(ii) At time t = 0, bead 2 is displaced upwards by a distance a, so that z2 = a, while
the other beads are at their equilibrium positions (z1 = z3 = 0), and all beads are
initially at rest. Find the subsequent time evolution of the displacement of each
bead, and describe the motion in terms of the normal modes. [8]
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8A

(i) Let G be a finite group. The centre Z(G) of G is the set of elements z ∈ G that
commute with every element g ∈ G, i.e.,

Z(G) = {z ∈ G | gz = zg, ∀ g ∈ G} .

Prove that Z(G) is a subgroup of G. [8]

(ii) Let Cn be the order n cyclic group.

Determine whether the product group C2 × C3 is isomorphic to the group C6. Do
the same for C2 × C4 and C8. [8]

What condition do the integers n and m have to satisfy in order for Cn ×Cm to be
isomorphic to Cn×m? [4]

9B

(i) State Lagrange’s theorem relating the order of a group to the orders of its sub-
groups. [2]

(ii) The symmetry group DN of a regular N -sided polygon is generated by elements R
and m, with RN = I, m2 = I and Rm = mR−1.

(a) List the distinct group elements of D5 and indicate the geometric action of
all order 2 elements on a sketch. [5]

(b) Find all proper subgroups of D5. [4]

(c) Explain the notion of a conjugacy class of a finite group and determine the
conjugacy classes of D5. Determine which of the proper subgroups of D5 are
normal. [9]
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10C

(i) Explain what is meant by a representation D of a group G. Define the terms faithful
representation, equivalent representation, and the character of a representation. [4]

(ii) Construct the group table for the order 4 cyclic group C4 = {I, a, a2, a3}. [4]

(iii) Consider the following faithful representations of C4:

D1 =

(
1 0
0 1

)
D2 =

(
0 1
−1 0

)
D3 =

(
−1 0
0 −1

)
D4 =

(
0 −1
1 0

)
,

and

E1 =

(
1 0
0 1

)
E2 =

(
i 0
0 i

)
E3 =

(
−1 0
0 −1

)
E4 =

(
−i 0
0 −i

)
.

Determine whether the representations D and E are equivalent or inequivalent,
clearly justifying your answer. Find the characters of each representation. [4]

(iv) Consider a three-dimensional representation, T , of C4 for which the element a is
represented by

T (a) =




1 0 0
0 0 b
0 c 0


 .

What are the conditions on the real constants b and c such that T is: (1) a faithful
representation; and (2) an unfaithful representation of C4? [8]

END OF PAPER
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